Skip to main content
Log in

Giant strains of 0.5% accompanying polarization extension and polarization rotation in (Bi0.5Na0.5)TiO3–PbTiO3–Pb(Zn1/3Nb2/3)O3 ternary system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Giant electrostrain (~ 0.5% @ 7 kV/mm) in a new (0.96 − x)(Bi0.5Na0.5)TiO3–0.04PbTiO3 − xPb(Zn1/3Nb2/3)O3 (BNT–PT–xPZN) ternary system was found to be associated with the evolution of compositionally modulated dielectric relaxation behavior. The x = 0.2 composition with the maximum strain should be in the middle of the ergodic relaxor zone instead of the ergodic–non-ergodic phase boundary. Electric-induced polarization behavior and polarization reversal dynamic scaling behavior as well as in situ synchrotron X-ray diffraction were used to qualitatively and quantitatively analyze the origin of the strain. It is suggested that the main contribution to the strain of the ergodic relaxor dominated compositions, such as x = 0.13 and x = 0.3 near the boundaries of ergodic zone, should be from the electric field-induced polarization extension. However, for the purely ergodic composition of x = 0.2, its strain mainly originates from polarization extension in a low field range and polarization rotation in a high electric field range, taking up 75.6% and 24.4%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Behera, B.C. Sutar, N.R. Pradhan, Recent progress on 2D ferroelectric and multiferroic materials, challenges, and opportunity. Emergent Mater. 4, 847–863 (2021)

    Article  CAS  Google Scholar 

  2. N.A. Spaldin, R. Ramesh, Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019)

    Article  CAS  Google Scholar 

  3. Z.A. Li, H.-C.B. Thong, Y.-F.C. Zhang, Z.B. Xu, Z.B. Zhou, Y.-X.B. Liu, Y.-Y.-S.B. Cheng, S.-H.A. Wang, C.B. Zhao, F.D. Chen, K.A. Bi, B.C. Han, K.B. Wang, Defect engineering in lead zirconate titanate ferroelectric ceramic for enhanced electromechanical transducer efficiency. Adv. Funct. Mater. 31, 2005012 (2021)

    Article  CAS  Google Scholar 

  4. S.K. Bo, J.H. Ji, J.H. Koh, Improved strain and transduction values of low-temperature sintered CuO-doped PZT-PZNN soft piezoelectric materials for energy harvester applications. Ceram. Int. 47, 6683–6690 (2021)

    Article  Google Scholar 

  5. I. Seo, S. Jo, D.S. Kim, H.W. Kang, S.H. Han, Fabrication and characterization of low temperature-sintered hard piezoelectric ceramics for multilayer piezoelectric energy harvesters. Ceram. Int. 47, 16688–16695 (2021)

    Article  CAS  Google Scholar 

  6. A. Deng, J. Wu, Optimized strain properties with small hysteresis in BNT-based ceramics with ergodic relaxor state. J. Eur. Ceram. Soc. 41, 5147–5154 (2021)

    Article  CAS  Google Scholar 

  7. K.T.P. Seifert, W. Jo, J. Rödel, Temperature-insensitive large strain of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-(K0.5Na0.5)NbO3 lead-free piezoceramics. J. Am. Ceram. Soc. 93, 1392–1396 (2010)

    CAS  Google Scholar 

  8. W. Jo, T. Granzow, E. Aulbach, J. Rödel, D. Damjanovic, Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoceramics. J. Appl. Phys. 105, 094102 (2009)

    Article  Google Scholar 

  9. S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112–906 (2007)

    Article  Google Scholar 

  10. W.F. Bai, Y.L. Bian, J.G. Hao, B. Shen, J.W. Zhai, The composition and temperature-dependent structure evolution and large strain response in (1–x)(Bi0.5Na0.5)TiO3-xBa(Al0.5Ta0.5)O3 ceramics. J. Am. Ceram. Soc. 96, 246–252 (2013)

    Article  CAS  Google Scholar 

  11. J. Hao, W. Bai, W. Li, B. Shen, J. Zhai, Phase transitions, relaxor behavior, and large strain response in LiNbO3-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoceramics. J. Appl. Phys. 114, 44–103 (2013)

    Article  Google Scholar 

  12. R.Z. Zuo, C. Ye, X.S. Fang, J.W. Li, Tantalum doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28, 871–877 (2008)

    Article  CAS  Google Scholar 

  13. K.N. Pham, A. Hussain, C.W. Ahn, I.W. Kim, S.J. Jeong, J.S. Lee, Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics. Mater. Lett. 64, 2219–2222 (2010)

    Article  CAS  Google Scholar 

  14. F.F. Wang, M. Xu, Y.X. Tang, T. Wang, W.Z. Shi, C.M. Leung, Large strain response in the ternary Bi0.5Na0.5TiO3–BaTiO3–SrTiO3 solid solutions. J. Am. Ceram. Soc. 95, 1955–1959 (2012)

    Article  CAS  Google Scholar 

  15. J. Fu, R.Z. Zuo, Giant electrostrains accompanying the evolution of a relaxor behavior in Bi(Mg, Ti)O3–PbZrO3–PbTiO3 ferroelectric ceramics. Acta Mater. 61, 3687–3694 (2013)

    Article  CAS  Google Scholar 

  16. J. Chen, J.Y. Li, L.L. Fan, N. Zou, P.F. Ji, L. Liu, L. Fang, H.J. Kang, X.R. Xing, Enhanced piezoelectric and antiferroelectric properties of high-Tc perovskite of Zr-substituted Bi(Mg1/2Ti1/2)O3-PbTiO3. J. Appl. Phys. 112, 74–101 (2012)

    Google Scholar 

  17. W.L. Zhao, R.Z. Zuo, D.G. Zheng, L.T. Li, Dielectric relaxor evolution and frequency-insensitive giant strains in (Bi0.5Na0.5)TiO3-modified Bi(Mg0.5Ti0.5)TiO3-PbTiO3 ferroelectric ceramics. J. Am. Ceram. Soc. 97, 1855–1860 (2014)

    Article  CAS  Google Scholar 

  18. L.L. Fan, J. Chen, S. Li, H.J. Kang, L.J. Liu, L. Fang, X.R. Xing, Enhanced piezoelectric and ferroelectric properties in the BaZrO3 substituted BiFeO3-PbTiO3. Appl. Phys. Lett. 102, 022905 (2013)

    Article  Google Scholar 

  19. A.A. Bokov, Z.-G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006)

    Article  CAS  Google Scholar 

  20. D.S. Fu, H. Taniguchi, M. Itoh, S.Y. Koshihara, N. Yamamoto, S. Mori, Relaxor Pb(Mg1/3Nb2/3)O3: a ferroelectric with multiple inhomogeneities. Phys. Rev. Lett. 103, 207601 (2009)

    Article  Google Scholar 

  21. S.M. Gupta, J.F. Li, D. Viehland, Coexistence of relaxor and normal ferroelectric phases in morphotropic phase boundary compositions of lanthanum-modified lead zirconate titanate. J. Am. Ceram. Soc. 81, 557–564 (1998)

    Article  CAS  Google Scholar 

  22. W. Jo, J. Rödel, Electric-field-induced volume change and room temperature phase stability of (Bi1/2Na1/2)TiO3-x mol.% BaTiO3 piezoceramics. Appl. Phys. Lett. 99, 42–042901 (2011)

    Article  Google Scholar 

  23. W.L. Zhao, R.Z. Zuo, J. Fu, M. Shi, Large strains accompanying field-induced ergodic-polar ordered phase transformations in Bi(Mg0.5Ti0.5)-PbTiO3-(Bi0.5Na0.5)TiO3 ternary system. J. Eur. Ceram. Soc. 34, 2299–2309 (2014)

    Article  CAS  Google Scholar 

  24. W.L. Zhao, R.Z. Zuo, J. Fu, Temperature-insensitive large electrostrains and electric field induced intermediate phases in (0.7-x)Bi(Mg1/2Ti1/2)O3-xPb(Mg1/3Nb2/3)O3–0.3PbTiO3 ceramics. J. Eur. Ceram. Soc. 34, 4235–4245 (2014)

    Article  CAS  Google Scholar 

  25. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectr. Lett. 44, 55–61 (1982)

    Article  CAS  Google Scholar 

  26. W. Chen, X. Yao, X.Y. Wei, Tunability and ferroelectric relaxor properties of bismuth strontium titanate ceramics. Appl. Phys. Lett. 90, 182902 (2007)

    Article  Google Scholar 

  27. L.-L. Zhang, Y.-N. Huang, Theory of relaxor-ferroelectricity. Sci. Rep. 10, 5060 (2020)

    Article  CAS  Google Scholar 

  28. Q. Li, S. Danilkin, G.C. Deng, Z.R. Li, R.L. Withers, Z. Xu, Y. Liu, Soft phonon modes and diffuse scattering in Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 relaxor ferroelectrics. J. Materiom. 4, 345–352 (2018)

    Article  Google Scholar 

  29. J.Y. Wu, H.F. Zhang, N. Meng, V. Koval, A. Mahajan, Z.P. Gao, D. Zhang, H.X. Yan, Perovskite Bi0.5Na0.5TiO3-based materials for dielectric capacitors with ultrahigh thermal stability. Mater. Des. 198, 109344 (2021)

    Article  CAS  Google Scholar 

  30. R. Grigalaitis, J. Banys, A. Brilingas, J. Grigas, A. Kania, A. Slodczyk, Dielectric dispersion in pure PMN and PMN with 10% PT single crystals. Ferroelectrics 339, 21–28 (2006)

    Article  CAS  Google Scholar 

  31. M. Kumar, G. Sharma, S.D. Kaushik, A.K. Singh, S. Kumar, Critical behavior of relaxor Pb0.91La0.09(Zr0.65Ti0.35)O3: Interplay between polar nano regions, electrocaloric and energy storage response. J. Alloys Compd. 884, 161067 (2021)

    Article  CAS  Google Scholar 

  32. R. Pirc, R. Blinc, Vogel-Fulcher freezing in relaxor ferroelectrics. Phys. Rev. B 76, 1–3 (2007)

    Article  Google Scholar 

  33. Z. Kutnjak, J. Petzelt, R. Blinc, The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956–959 (2006)

    Article  CAS  Google Scholar 

  34. C.S. Tu, I.C. Shih, V.H. Schmidt, R. Chien, E-field-induced polarization rotation in Pb(Mg1/3Nb2/3)1-xTixO3 crystal. Appl. Phys. Lett. 83, 1833–1835 (2003)

    Article  CAS  Google Scholar 

  35. M. Budimir, D. Damjanovic, N. Setter, Piezoelectric response and free-energy instability in the perovskite crystals BaTiO3, PbTiO3, and Pb(Zr, Ti)O3. Phys. Rev. B 73, 174106 (2006)

    Article  Google Scholar 

  36. C.H. Zhao, F. Li, S.J. Zhang, S.T. Li, J.L. Jones, Mechanisms underpinning the ultrahigh piezoelectricity in Sm-doped 0.705Pb(Mg1/3Nb2/3)O3–0.295PbTiO3: temperature-induced metastable local structure and field-induced polarization rotation. J. Appl. Phys. J. 126, 075101 (2019)

    Article  Google Scholar 

  37. D. Damjanovic, A morphotropic phase boundary system based on polarization rotation and polarization extension. Appl. Phys. Lett. 97, 0622906 (2010)

    Article  Google Scholar 

  38. M. Acosta, N. Novak, W. Jo, J. Rödel, Relationship between electromechanical properties and phase diagram in the Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 lead-free piezoceramic. Acta Mater. 80, 48–55 (2014)

    Article  CAS  Google Scholar 

  39. J.F. Nye, Physical properties of crystals (Oxford Science Publications, Oxford, 1993)

    Google Scholar 

  40. R.E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford University Press, Oxford, 2005)

    Google Scholar 

  41. P.Y. Chen, C.S. Chen, C.S. Tu, T.L. Chang, Large E-field induced strain and polar evolution in lead-free Zr-doped 92.5%(Bi0.5Na0.5)TiO3-7.5%BaTiO3 ceramics. J. Eur. Ceram. Soc. 34, 4223–4233 (2014)

    Article  CAS  Google Scholar 

  42. S.T. Zhang, A.B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, D. Damjanovic, High-strain lead-free antiferroelectric electrostrictors. Adv. Mater. 21, 4716–4720 (2009)

    Article  CAS  Google Scholar 

  43. V.D.N. Tran, H.S. Han, C.H. Yoon, J.S. Lee, W. Jo, J. Rödel, Lead-free electrostrictive bismuth perovskite ceramics with thermally stable field-induced strains. Mater. Lett. 65, 2607–2609 (2011)

    Article  CAS  Google Scholar 

  44. J. Shi, H.Q. Fan, X. Liu, Q. Li, Ferroelectric hysteresis loop scaling and electric-field-induced strain of Bi0.5Na0.5TiO3-BaTiO3 ceramics. Phys. Status Solidi A. 211, 2388–2393 (2014)

    Article  CAS  Google Scholar 

  45. J. Fu, R.Z. Zuo, Polarization reversal and dynamic scaling of (Na0.5K0.5)NbO3 lead-free ferroelectric ceramics with double hysteresis-like loops. J. Appl. Phys. 112, 104114 (2012)

    Article  Google Scholar 

  46. G. Yu, X.L. Dong, G.S. Wang, F. Cao, X.F. Chen, H.C. Nie, Three-stage evolution of dynamic hysteresis scaling behavior in 63PbTiO3−37BiScO3 bulk ceramics. J. Appl. Phys. 107, 106102 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (Grant Nos. 52072103 and U19A2087) and the AHPU innovation team project (S022021058) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He Qi or Ruzhong Zuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Z., Li, T., Qi, H. et al. Giant strains of 0.5% accompanying polarization extension and polarization rotation in (Bi0.5Na0.5)TiO3–PbTiO3–Pb(Zn1/3Nb2/3)O3 ternary system. J Mater Sci: Mater Electron 33, 2566–2581 (2022). https://doi.org/10.1007/s10854-021-07462-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07462-5

Navigation