Skip to main content
Log in

Investigation of charge transport mechanism in hydrothermally synthesized reduced graphene oxide (rGO) incorporated zinc oxide (ZnO) nanocomposite films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study aims to investigate the impact of reduced graphene oxide (rGO) incorporation on the charge transport properties of zinc oxide (ZnO) nanocomposite films. ZnO and varied weight percentage of rGO (1.25% to 10%) in ZnO-rGO nanocomposites are synthesized via cost-effective and facile hydrothermal method. The effect of varying weight percentage of rGO in ZnO nanocomposite is analysed by techniques such as X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), Fourier transform infra-red spectroscopy (FTIR), and Raman spectroscopy. The observed current–voltage (I–V) characteristics at room temperature show the enhancement in forward current with an increasing weight percentage of rGO (1.25% to 10%) in ZnO nanocomposite films. To study the charge transport mechanism in nanocomposite films, dual-logarithmic I–V characteristics are plotted. From the characteristic curves, we find that three different laws of space charge limited conduction (SCLC) model namely Ohm’s law, Child’s law, and trap-limited SCLC mechanism describe charge transport properties in the ZnO-rGO nanocomposite films. At a low weight percentage of rGO (1.25%) in ZnO-rGO nanocomposite films, a transition from Child’s law to trap-limited SCLC mechanism (0.9 V being the cross-over voltage) is obtained. As the weight percentage of rGO in ZnO-rGO nanocomposite films is increased from 2.5 to 10%, the conduction is favored by Ohm’s law at low applied voltages to Child’s law at higher applied voltages. Best experimental results are shown with 5% of rGO in ZnO-rGO nanocomposite. The prepared nanocomposite films have potential applications in UV-photodetector devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Ramírez-Amador, J. Alvarado, G. Flores-Carrasco, L. Morales-Delagarza, S. Alcántara-Iniesta, A. Luna-Flores, Y.P. Bernal, M.Á. Méndezrojas, J.J. Gervacio-Arciniega, H.P. Martínez Hernández, J.F. Curioca-Vega, The influence of deposition time on the structural, morphological, optical and electrical properties of ZnO-rGO nanocomposite thin films grown in a single step by USP. Curr. Comput.-Aided Drug Des. 10(2), 73 (2020). https://doi.org/10.3390/cryst10020073

    Article  CAS  Google Scholar 

  2. I. Sameera, R. Bhatia, V. Prasad, R.J.A.P.L. Menon, Temperature dependent current-voltage characteristics of zinc oxide nanowire/polypyrrole nanocomposite. Appl. Phys. Lett. 105(23), 232112 (2014). https://doi.org/10.1063/1.4903923

    Article  CAS  Google Scholar 

  3. Liyana, G.R., Sofyan, N., Dhaneswara, D., Subhan, A., Yuwono, A.H.: Optoelectronic properties of ZnO nanorods thin films derived from chemical bath deposition with different growth times. In: AIP Conference Proceedings, vol. 1, p. 030008. AIP Publishing LLC. (2020) https://doi.org/10.1063/5.0015869

  4. D. Nath, S. Mandal, D. Deb, J. Rakshit, P. Dey, J.J.J.O.A.P. Roy, Light tuning DC and AC electrical properties of ZnO-rGO based hybrid nanocomposite film. J. Appl. Phys. 123(9), 095115 (2018). https://doi.org/10.1063/1.5016098

    Article  CAS  Google Scholar 

  5. J. Yin, F. Gao, C. Wei, Q.J.S.R. Lu, Water amount dependence on morphologies and properties of ZnO nanostructures in double-solvent system. Sci. Rep. 4(1), 1–7 (2014). https://doi.org/10.1038/srep03736

    Article  CAS  Google Scholar 

  6. M. Morsy, I. Yahia, H. Zahran, F. Meng, M.J.J.O.E.M. Ibrahim, Portable and battery operated ammonia gas sensor based on CNTs/rGO/ZnO nanocomposite. J. Electron. Mater. 48(11), 7328–7335 (2019). https://doi.org/10.1007/s11664-019-07550-7

    Article  CAS  Google Scholar 

  7. Y. Zhao, L. Liu, T. Cui, G. Tong, W.J.A.S.S. Wu, Enhanced photocatalytic properties of ZnO/reduced graphene oxide sheets (rGO) composites with controllable morphology and composition. Appl. Surf. Sci. 412, 58–68 (2017). https://doi.org/10.1016/j.apsusc.2017.03.207

    Article  CAS  Google Scholar 

  8. Y. Liu, Y. Hu, M. Zhou, H. Qian, X.J.A.C.B.E. Hu, Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced graphene oxide sheets with improved photoactivity for the decolorization of dyes under visible light. Appl. Catal. B 125, 425–431 (2012). https://doi.org/10.1016/j.apcatb.2012.06.016

    Article  CAS  Google Scholar 

  9. S.-C. Weng, S. Brahma, C.-C. Chang, J.L.J.I.J.E.S. Huang, Synthesis of self-assembled hollow-sphere ZnO/rGO nanocomposite as anode materials for lithium-ion batteries. Int. J. Electrochem. Sci 14, 3727–3739 (2019). https://doi.org/10.20964/2019.04.63

    Article  CAS  Google Scholar 

  10. Z.K. Bolaghi, S. Masoudpanah, M.J.M.R.B. Hasheminiasari, Photocatalytic activity of ZnO/RGO composite synthesized by one-pot solution combustion method. Mater. Res. Bull. 115, 191–195 (2019). https://doi.org/10.1016/j.materresbull.2019.03.024

    Article  CAS  Google Scholar 

  11. Z. Liu, L. Yu, F. Guo, S. Liu, L. Qi, M. Shan, X.J.A.S.S. Fan, Facial development of high performance room temperature NO2 gas sensors based on ZnO nanowalls decorated rGO nanosheets. Appl. Surf. Sci. 423, 721–727 (2017). https://doi.org/10.1016/j.apsusc.2017.06.160

    Article  CAS  Google Scholar 

  12. Z. Zhan, L. Zheng, Y. Pan, G. Sun, L.J.J.O.M.C. Li, Self-powered, visible-light photodetector based on thermally reduced graphene oxide–ZnO (rGO–ZnO) hybrid nanostructure. J. Mater. Chem. 22(6), 2589–2595 (2012). https://doi.org/10.1039/C1JM13920G

    Article  CAS  Google Scholar 

  13. H. Abdullah, N.A. Atiqah, A. Omar, I. Asshaari, S. Mahalingam, Z. Razali, S. Shaari, J. Mandeep, H.J.J.O.M.S.M.I.E. Misran, Structural, morphological, electrical and electron transport studies in ZnO–rGO (wt%= 0.01, 0.05 and 0.1) based dye-sensitized solar cell. J. Mater. Sci. 26(4), 2263–2270 (2015). https://doi.org/10.1007/s10854-015-2679-y

    Article  CAS  Google Scholar 

  14. K.P. Madhuri, K. Bramhaiah, N.S.J.M.R.E. John, Nanoscale photocurrent distribution in ultra-thin films of zinc oxide nanoparticles and their hybrid with reduced graphene oxide. Mater. Res. Exp. 3(3), 035004 (2016). https://doi.org/10.1088/2053-1591/3/3/035004

    Article  CAS  Google Scholar 

  15. S. Tiagulskyi, R. Yatskiv, H. Faitova, Š Kučerová, J. Vaniš, J.J.M.S.I.S.P. Grym, Electrical properties of nanoscale pn heterojunctions formed between a single ZnO nanorod and GaN substrate. Mater. Sci. Semicond 107, 104808 (2020). https://doi.org/10.1016/j.mssp.2019.104808

    Article  CAS  Google Scholar 

  16. Y. Al-Hadeethi, R.I. Badran, A. Umar, S.H. Al-Heniti, B.M. Raffah, S.J.M.E. Al-Zhrani, Electrical properties of Ga-doped ZnO nanowires/Si heterojunction diode. Mater. Exp. 10(6), 794–801 (2020). https://doi.org/10.1166/mex.2020.1725

    Article  CAS  Google Scholar 

  17. S. Nongthombam, S. Sinha, N.A. Devi, S. Rai, R. Bhujel, W.I. Singh, B.P. Swain, Charge Transfer Mechanism of Gallium Nitrite/Reduced Graphene Oxide (GaN/rGO) Nanocomposite. In: 2020 IEEE VLSI device circuit and system (VLSI DCS) 2020, pp. 171–175. IEEE. https://doi.org/10.1109/VLSIDCS47293.2020.9179877

  18. M. Soylu, M.J.J.O.A. Coskun, Compounds: controlling the properties of ZnO thin films by varying precursor concentration. J. Alloys Compds. 741, 957–968 (2018). https://doi.org/10.1016/j.jallcom.2018.01.079

    Article  CAS  Google Scholar 

  19. S.K. Mandal, K. Dutta, S. Pal, S. Mandal, A. Naskar, P.K. Pal, T. Bhattacharya, A. Singha, R. Saikh, S.J.M.C. De, Physics: Engineering of ZnO/rGO nanocomposite photocatalyst towards rapid degradation of toxic dyes. Mater. Chem. Phys. 223, 456–465 (2019). https://doi.org/10.1016/j.matchemphys.2018.11.002

    Article  CAS  Google Scholar 

  20. M. Darvishi, F. Jamali-Paghaleh, M. Jamali-Paghaleh, J.J.S. Seyed-Yazdi, Interfaces: Facile synthesis of ZnO/rGO hybrid by microwave irradiation method with improved photoactivity. Surf. Interfaces 9, 167–172 (2017). https://doi.org/10.1016/j.surfin.2017.09.008

    Article  CAS  Google Scholar 

  21. T.N. Reddy, J. Manna, R.K.J.A.A.M. Rana, interfaces: Polyamine-mediated interfacial assembly of rGO-ZnO nanostructures: a bio-inspired approach and enhanced photocatalytic properties. ACS Appl. Mater. Interfaces 7(35), 19684–19690 (2015). https://doi.org/10.1021/acsami.5b04820

    Article  CAS  Google Scholar 

  22. D.A. Reddy, R. Ma, T.K.J.C.I. Kim, Efficient photocatalytic degradation of methylene blue by heterostructured ZnO–RGO/RuO2 nanocomposite under the simulated sunlight irradiation. Ceram. Int. 41(5), 6999–7009 (2015). https://doi.org/10.1016/j.ceramint.2015.01.155

    Article  CAS  Google Scholar 

  23. M. Ghorbani, M.R. Golobostanfard, H.J.A.S.S. Abdizadeh, Flexible freestanding sandwich type ZnO/rGO/ZnO electrode for wearable supercapacitor. Appl. Surf. Sci. 419, 277–285 (2017). https://doi.org/10.1016/j.apsusc.2017.05.060

    Article  CAS  Google Scholar 

  24. P. Sengunthar, K. Bhavsar, C. Balasubramanian, U.J.A.P.A. Joshi, Physical properties and enhanced photocatalytic activity of ZnO-rGO nanocomposites. Appl. Phys. A 126(7), 1–9 (2020). https://doi.org/10.1007/s00339-020-03753-6

    Article  CAS  Google Scholar 

  25. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M.J.A.N. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010). https://doi.org/10.1021/nn1006368

    Article  CAS  Google Scholar 

  26. O.J.C. Akhavan, The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 48(2), 509–519 (2010). https://doi.org/10.1016/j.carbon.2009.09.069

    Article  CAS  Google Scholar 

  27. R. Bomila, A. Venkatesan, S.J.O. Srinivasan, Structural, luminescence and photocatalytic properties of pure and octylamine capped ZnO nanoparticles. Optik 158, 565–573 (2018). https://doi.org/10.1016/j.ijleo.2017.12.141

    Article  CAS  Google Scholar 

  28. H.-H. Huang, K.K.H. De Silva, G. Kumara, M.J.S.R. Yoshimura, Structural evolution of hydrothermally derived reduced graphene oxide. Sci. Rep. 8(1), 1–9 (2018). https://doi.org/10.1038/s41598-018-25194-1

    Article  CAS  Google Scholar 

  29. J. Jayachandiran, J. Yesuraj, M. Arivanandhan, A. Raja, S.A. Suthanthiraraj, R. Jayavel, D.J.J.O.I. Nedumaran, O. Polymers, Materials: Synthesis and electrochemical studies of rGO/ZnO nanocomposite for supercapacitor application. J. Inorg. Organometall. Polym. Mater. 28(5), 2046–2055 (2018). https://doi.org/10.1007/s10904-018-0873-0

    Article  CAS  Google Scholar 

  30. G. Qu, G. Fan, M. Zhou, X. Rong, T. Li, R. Zhang, J. Sun, D.J.A.O. Chen, Graphene-modified ZnO nanostructures for low-temperature NO2 sensing. ACS Omeg 4(2), 4221–4232 (2019). https://doi.org/10.1021/acsomega.8b03624

    Article  CAS  Google Scholar 

  31. K. Ravi, B.S. Mohan, G.S. Sree, I.M. Raju, K. Basavaiah, B.V.J.I.J.C.S. Rao, ZnO/RGO nanocomposite via hydrothermal route for photocatalytic degradation of dyes in presence of visible light. Int J Chem Stud 6(6), 20–26 (2018)

    CAS  Google Scholar 

  32. K. Arora, S. Srivastava, P.R. Solanki, N.K.J.I.S.J. Puri, Electrochemical hydrogen gas sensing employing palladium oxide/reduced graphene oxide (PdO-rGO) nanocomposites. IEEE Sens. J. 19(18), 8262–8271 (2019). https://doi.org/10.1109/JSEN.2019.2918360

    Article  CAS  Google Scholar 

  33. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing, Boston, 1956)

    Google Scholar 

  34. A. Goktas, A. Tumbul, Z. Aba, M.J.T.S.F. Durgun, Mg doping levels and annealing temperature induced structural, optical and electrical properties of highly c-axis oriented ZnO: Mg thin films and Al/ZnO: Mg/p-Si/Al heterojunction diode. Thin Solid Films 680, 20–30 (2019)

    Article  CAS  Google Scholar 

  35. A. Tumbul, F. Aslan, S. Demirozu, A. Goktas, A. Kilic, M. Durgun, M.Z.J.M.R.E. Zarbali, Solution processed boron doped ZnO thin films: influence of different boron complexes. Mater. Res. Exp. 6(3), 035903 (2018). https://doi.org/10.1088/2053-1591/aaf4d8

    Article  CAS  Google Scholar 

  36. H. Mohseni, H. Shokrollahi, I. Sharifi, K.J.J.O.M. Gheisari, M. Materials, Magnetic and structural studies of the Mn-doped Mg–Zn ferrite nanoparticles synthesized by the glycine nitrate process. J. Magn. Magn. Mater. 324(22), 3741–3747 (2012)

    Article  CAS  Google Scholar 

  37. D. Bobade, S. Rathod, M.L.J.P.B.C.M. Mane, Sol–gel auto-combustion synthesis, structural and enhanced magnetic properties of Ni2+ substituted nanocrystalline Mg–Zn spinel ferrite. Physica B 407(18), 3700–3704 (2012). https://doi.org/10.1016/j.physb.2012.05.017

    Article  CAS  Google Scholar 

  38. P. Labhane, L. Patle, V. Huse, G. Sonawane, S.J.C.P.L. Sonawane, Synthesis of reduced graphene oxide sheets decorated by zinc oxide nanoparticles: crystallographic, optical, morphological and photocatalytic study. Chem. Phys. Lett. 661, 13–19 (2016). https://doi.org/10.1016/j.cplett.2016.08.041

    Article  CAS  Google Scholar 

  39. A. Goktas, F. Aslan, I.H.J.J.O.M.S.M.I.E. Mutlu, Annealing effect on the characteristics of La 0.67 Sr 0.33 MnO3 polycrystalline thin films produced by the sol–gel dip-coating process. J. Mater. Sci. 23(2), 605–611 (2012)

    CAS  Google Scholar 

  40. A. Goktas, F. Aslan, B. Yeşilata, I.J.M.S.I.S.P. Boz, Physical properties of solution processable n-type Fe and Al co-doped ZnO nanostructured thin films: role of Al doping levels and annealing. Mater. Sci. Semicond. Process. 75, 221–233 (2018). https://doi.org/10.1016/j.mssp.2017.11.033

    Article  CAS  Google Scholar 

  41. Y.-L. Chen, Z.-A. Hu, Y.-Q. Chang, H.-W. Wang, Z.-Y. Zhang, Y.-Y. Yang, Wu, H.-Y.J.T.J.o.P.C.C., Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J. Phys. Chem. C 115(5), 2563–2571 (2011). https://doi.org/10.1021/jp109597n

    Article  CAS  Google Scholar 

  42. A. Göktaş, A. Tumbul, F.J.J.O.S.-G.S. Aslan, Technology: Grain size-induced structural, magnetic and magnetoresistance properties of Nd 0.67 Ca 0.33 MnO3 nanocrystalline thin films. J Sol-Gel Sci Technol 78(2), 262–269 (2016)

    Article  Google Scholar 

  43. S. Dewan, M. Tomar, R. Tandon, V.J.J.O.A.P. Gupta, Zn doping induced conductivity transformation in NiO films for realization of pn homo junction diode. J. Appl. Phys. 121(21), 215307 (2017). https://doi.org/10.1063/1.4984580

    Article  CAS  Google Scholar 

  44. X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun, C.J.C.E.J. Sun, UV-assisted photocatalytic synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr (VI). Chem. Eng. J. 183, 238–243 (2012). https://doi.org/10.1016/j.cej.2011.12.068

    Article  CAS  Google Scholar 

  45. B. Li, H.J.J.O.M.C. Cao, ZnO@ graphene composite with enhanced performance for the removal of dye from water. J. Mater. Chem. 21(10), 3346–3349 (2011). https://doi.org/10.1039/C0JM03253K

    Article  CAS  Google Scholar 

  46. L. Shi, S.J.N.R.I. Gunasekaran, Preparation of pectin–ZnO nanocomposite. Nanoscale Res. Lett. 3(12), 491–495 (2008). https://doi.org/10.1007/s11671-008-9185-6

    Article  CAS  Google Scholar 

  47. N. Bano, I. Hussain, A. El-Naggar, A.J.A.P.A. Albassam, Reduced graphene oxide nanocomposites for optoelectronics applications. Appl. Phys. 125(3), 1–7 (2019). https://doi.org/10.1007/s00339-019-2518-8

    Article  CAS  Google Scholar 

  48. M.E. Uddin, R.K. Layek, N.H. Kim, D. Hui, J.H.J.C.P.B.E. Lee, Preparation and properties of reduced graphene oxide/polyacrylonitrile nanocomposites using polyvinyl phenol. Compos. B 80, 238–245 (2015). https://doi.org/10.1016/j.compositesb.2015.06.009

    Article  CAS  Google Scholar 

  49. S. Kumar, V. Pandit, K. Bhattacharyya, V.J.M.C. Krishnan, Physics: Sunlight driven photocatalytic reduction of 4-nitrophenol on Pt decorated ZnO-RGO nanoheterostructures. Mater. Chem. Phys. A 214, 364–376 (2018). https://doi.org/10.1016/j.matchemphys.2018.04.113

    Article  CAS  Google Scholar 

  50. C. Rodwihok, D. Wongratanaphisan, Y.L. Thi Ngo, M. Khandelwal, S.H. Hur, J.S.J.N. Chung, Effect of GO additive in ZnO/rGO nanocomposites with enhanced photosensitivity and photocatalytic activity. Nanomaterials 9(10), 1441 (2019). https://doi.org/10.3390/nano9101441

    Article  CAS  Google Scholar 

  51. R. Beura, P.J.J.O.P. Thangadurai, C.O. Solids, Structural, optical and photocatalytic properties of graphene-ZnO nanocomposites for varied compositions. J. Phys. Chem. Solids 102, 168–177 (2017). https://doi.org/10.1016/j.jpcs.2016.11.024

    Article  CAS  Google Scholar 

  52. H. Fan, X. Zhao, J. Yang, X. Shan, L. Yang, Y. Zhang, X. Li, M.J.C.C. Gao, ZnO–graphene composite for photocatalytic degradation of methylene blue dye. Catal. Commun. 29, 29–34 (2012). https://doi.org/10.1016/j.catcom.2012.09.013

    Article  CAS  Google Scholar 

  53. Y.T. Li, J.M. Xu, Z.J. Tang, T.T. Xu, X.J.J.J.O.A. Li, Compounds: Nearly white light photoluminescence from ZnO/rGO nanocomposite prepared by a one-step hydrothermal method. J. Alloys Compds. 715, 122–128 (2017). https://doi.org/10.1016/j.jallcom.2017.04.286

    Article  CAS  Google Scholar 

  54. X. Díez-Betriu, S. Álvarez-García, C. Botas, P. Álvarez, J. Sánchez-Marcos, C. Prieto, R. Menéndez, A.J.J.O.M.C.C. De Andrés, Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films. J. Mater. Chem. C 1(41), 6905–6912 (2013)

    Article  Google Scholar 

  55. H. Liu, M. Xiang, X.J.J.O.M.S. Shao, Graphene/ZnO nanocomposite with seamless interface renders photoluminescence quenching and photocatalytic activity enhancement. J. Mater. Sci. 53(19), 13924–13935 (2018). https://doi.org/10.1007/s10853-018-2605-9

    Article  CAS  Google Scholar 

  56. S. Demirezen, A. Kaya, Ö. Vural, ŞJ.M.S.I.S.P. Altındal, The effect of Mo-doped PVC+ TCNQ interfacial layer on the electrical properties of Au/PVC+ TCNQ/p-Si structures at room temperature. Mater. Sci. Semicond. Process 33, 140–148 (2015). https://doi.org/10.1016/j.mssp.2015.01.050

    Article  CAS  Google Scholar 

  57. S.A. Yerişkin, M. Balbaşı, I.J.J.O.M.S.M.I.E. Orak, The effects of (graphene doped-PVA) interlayer on the determinative electrical parameters of the Au/n-Si (MS) structures at room temperature. J. Mater. Sci. Mater. Electron. 28(18), 14040–14048 (2017). https://doi.org/10.1007/s10854-017-7255-1

    Article  CAS  Google Scholar 

  58. S. Safa, R. Sarraf-Mamoori, R. Azimirad, The effects of reduced graphene oxide (rGO) on ZnO film UV-detector. In: Advanced Materials Research 2014, pp. 577–582. Trans Tech Publ. https://doi.org/10.4028/www.scientific.net/AMR.829.577

  59. A. Eroğlu, S. Demirezen, Y. Azizian-Kalandaragh, S.S.J.J.O.M.S.M.I.E. Altındal, A comparative study on the electrical properties and conduction mechanisms of Au/n-Si Schottky diodes with/without an organic interlayer. J. Mater. Sci 31(17), 14466–14477 (2020). https://doi.org/10.1007/s10854-020-04006-1

    Article  CAS  Google Scholar 

  60. M. Mohiuddin, B. Kumar, S.J.B.C.I.E. Haque, Biopolymer composites in photovoltaics and photodetectors. Biopolym. Compos. Electron. 45, 459–486 (2017). https://doi.org/10.1016/B978-0-12-809261-3.00017-6

    Article  Google Scholar 

  61. B. Murali, S.J.D.T. Krupanidhi, Transport properties of CuIn 1–x Al x Se 2/AZnO heterostructure for low cost thin film photovoltaics. Dalton Trans. 43(5), 1974–1983 (2014). https://doi.org/10.1039/C3DT52515E

    Article  CAS  Google Scholar 

  62. X. Yan, H. Hao, Y. Chen, S. Shi, E. Zhang, J. Lou, Liu, B.J.N.R.l., Self-rectifying performance in the sandwiched structure of Ag/In-Ga-Zn-O/Pt bipolar resistive switching memory. Nanoscale Res. Lett. 9(1), 1–6 (2014). https://doi.org/10.1186/1556-276X-9-548

    Article  CAS  Google Scholar 

  63. E. Tanrıkulu, S. Demirezen, Ş Altındal, İJ.J.O.M.S.M.I.E. Uslu, Analysis of electrical characteristics and conduction mechanisms in the Al/(% 7 Zn-doped PVA)/p-Si (MPS) structure at room temperature. J Mater Sci 28(12), 8844–8856 (2017). https://doi.org/10.1007/s10854-017-6613-3

    Article  CAS  Google Scholar 

  64. S. Demirezen, S.A.J.P.B. Yerişkin, A detailed comparative study on electrical and photovoltaic characteristics of Al/p-Si photodiodes with coumarin-doped PVA interfacial layer: the effect of doping concentration. Polym. Bull. 77(1), 49–71 (2020). https://doi.org/10.1007/s00289-019-02704-3

    Article  CAS  Google Scholar 

  65. S. Demirezen, H. Çetinkaya, M. Kara, F. Yakuphanoğlu, ŞJ.S. Altındal, A.A. Physical, Synthesis, electrical and photo-sensing characteristics of the Al/(PCBM/NiO: ZnO)/p-Si nanocomposite structures. Sens. Actuators A 317, 112449 (2021). https://doi.org/10.1016/j.sna.2020.112449

    Article  CAS  Google Scholar 

  66. Chiu, F.-C., Pan, T.-M., Kundu, T.K., Shih, C.-H.: Thin film applications in advanced electron devices. In. Hindawi, (2014). https://doi.org/10.1155/2014/927358

Download references

Acknowledgements

The authors gratefully acknowledge the Vice-Chancellor, Prof. Yogesh Singh, Delhi Technological University, Delhi, India for his meticulous support for arranging the research facilities. The authors are grateful to Dr. Kamal Arora, Ritika Khatri, Anurag Bhandari, and Saroj Kumar Jha for their continuous support in preparing the manuscript as well as in the analysis of characterization techniques. The authors sincerely thank the Advanced Instrumentation Research Facility (AIRF), JNU, Delhi, India for providing sophisticated characterization techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin K. Puri.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, N., Sharma, S. & Puri, N.K. Investigation of charge transport mechanism in hydrothermally synthesized reduced graphene oxide (rGO) incorporated zinc oxide (ZnO) nanocomposite films. J Mater Sci: Mater Electron 33, 1307–1323 (2022). https://doi.org/10.1007/s10854-021-07445-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07445-6

Navigation