Skip to main content
Log in

Optical and scintillation properties of ZnO translucent ceramics annealed at different temperatures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO translucent ceramics were synthesized by spark plasma sintering. To improve photoluminescence (PL) and scintillation properties caused by mainly oxygen vacancies in addition to some kinds of other defects, the synthesized samples were annealed at the temperature range from 600 to 800 °C in steps of 50 °C in the air. All the ZnO samples showed PL and scintillation at around 500 nm with the decay time constants of several microseconds order. After the annealing, the absorption due to oxygen vacancies was decreased, and PL quantum yields (QYs) and scintillation light yields (LYs) were improved in comparison with the as-prepared sample. Among all the samples, the ZnO translucent ceramic annealed at 750 °C showed the highest PL QY (25.1%) and LYs (44,200 ph/5.5 MeV-α and 30,500 ph/MeV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Dorenbos, Opt. Mater. X 1, 100021 (2019)

    CAS  Google Scholar 

  2. S.E. Derenzo, E. Bourret-Courshesne, G. Bizarri, A. Canning, Nucl. Instrum. Methods Phys. Res. Sect. A 805, 36 (2016)

    Article  CAS  Google Scholar 

  3. T. Yanagida, 94, 75 (2018)

  4. T. Itoh, M. Kokubun, T. Takashima, T. Yanagida, S. Hirakuri, R. Miyawaki, H. Takahashi, K. Makishima, T. Tanaka, K. Nakazawa, T. Takahashi, T. Honda, IEEE Nucl. Sci. Symp. Conf. Rec. 1, 186 (2005)

    Google Scholar 

  5. Q. Liu, Y. Cheng, Y. Yang, Y. Peng, H. Li, Y. Xiong, T. Zhu, Appl. Radiat. Isot. 163, 109217 (2020)

    Article  CAS  Google Scholar 

  6. V.D. Ryzhikov, A.D. Opolonin, P.V. Pashko, V.M. Svishch, V.G. Volkov, E.K. Lysetskaya, D.N. Kozin, C. Smith, Nucl. Instrum. Methods Phys. Res. Sect. A 537, 424 (2005)

    Article  CAS  Google Scholar 

  7. I. Kanno, R. Imamura, Y. Yamashita, M. Ohtaka, M. Hashimoto, K. Ara, H. Onabe, Jpn. J. Appl. Phys. 53, 056601 (2014)

    Article  CAS  Google Scholar 

  8. Y. Shirakawa, Nucl. Instrum. Methods Phys. Res. Sect. B 263, 58 (2007)

    Article  CAS  Google Scholar 

  9. C.L. Melcher, Nucl. Inst. Methods Phys. Res. B 40–41, 1214 (1989)

    Article  Google Scholar 

  10. K. Watanabe, T. Yanagida, K. Fukuda, Sens. Mater. 27, 269 (2015)

    Google Scholar 

  11. S. Yamamoto, Nucl. Instrum. Methods Phys. Res. A 392, 291–294 (1997)

    Article  CAS  Google Scholar 

  12. M. Toribio, J.F. García, A. Izquierdo-Ridorsa, R. Tauler, G. Rauret, Anal. Chim. Acta 310, 297 (1995)

    Article  CAS  Google Scholar 

  13. S.A. McElhaney, J.A. Ramsey, M.L. Bauer, M.M. Chiles, IEEE Trans. Nucl. Sci. 37, 868 (1990)

    Article  CAS  Google Scholar 

  14. A. Sinha, B.D. Bhawe, C.G. Panchal, A. Shyam, M. Srinivasan, V.M. Joshi, Nucl. Instrum. Methods Phys. Res. Sect. B 111, 171 (1996)

    Article  CAS  Google Scholar 

  15. S.O. Kucheyev, J.S. Williams, C. Jagadish, J. Zou, C. Evans, A.J. Nelson, A.V. Hamza, Phys. Rev. B. (2003). https://doi.org/10.1103/PhysRevB.67.094115

    Article  Google Scholar 

  16. T. Yanagida, Y. Fujimoto, M. Miyamoto, H. Sekiwa, Jpn. J. Appl. Phys. 53, 0 (2014)

    Article  CAS  Google Scholar 

  17. E.I. Gorokhova, G.V. Anan’eva, V.A. Demidenko, P.A. Rodnyĭ, I.V. Khodyuk, E.D. Bourret-Courchesne, J. Opt. Technol. 75, 741 (2008)

    Article  CAS  Google Scholar 

  18. K.A. Chernenko, E.I. Gorokhova, S.B. Eronko, A.V. Sandulenko, I.D. Venevtsev, H. Wieczorek, P.A. Rodnyi, IEEE Trans. Nucl. Sci. 65, 2196 (2018)

    Article  CAS  Google Scholar 

  19. T. Yanagida, Y. Fujimoto, K. Yamanoi, M. Kano, A. Wakamiya, S. Kurosawa, N. Sarukura, Phys. Status Solidi Curr. Top. Solid State Phys. 9, 2284 (2012)

    CAS  Google Scholar 

  20. E.I. Gorokhova, G.V. Ananieva, S.B. Eron’ko, E.A. Oreschenko, P.A. Rodnyi, K.A. Chernenko, I.V. Khodyuk, E.P. Lokshin, G.B. Kunshina, O.G. Gromov, K.P. Loot, J. Opt. Technol. 78, 753 (2011)

    Article  CAS  Google Scholar 

  21. P.A. Rodnyi, K.A. Chernenko, E.I. Gorokhova, S.S. Kozlovskii, V.M. Khanin, I.V. Khodyuk, IEEE Trans. Nucl. Sci. 59, 2152 (2012)

    Article  CAS  Google Scholar 

  22. V.A. Demidenko, E.I. Gorokhova, I.V. Khodyuk, O.A. Khristich, S.B. Mikhrin, P.A. Rodnyi, Radiat. Meas. 42, 549 (2007)

    Article  Google Scholar 

  23. P.A. Rodnyi, E.I. Gorokhova, K.A. Chernenko, I.V. Khoduk, I.O.P. Conf, Ser. Mater. Sci. Eng. 38, 012002 (2012)

    Google Scholar 

  24. E.I. Gorokhova, S.B. Eron’ko, E.A. Oreshchenko, A.V. Sandulenko, P.A. Rodnyĭ, K.A. Chernenko, I.D. Venevtsev, A.M. Kul’kov, F. Muktepavela, P. Boutachkov, J. Opt. Technol. 85, 729 (2018)

    Article  CAS  Google Scholar 

  25. P.A. Rodnyi, I.V. Khodyuk, Opt. Spectrosc. 111, 776 (2011)

    Article  CAS  Google Scholar 

  26. P. Rodnyi, K. Chernenko, O. Klimova, V. Galkin, A. Makeenko, E. Gorokhova, D. Buettner, W. Keur, H. Wieczorek, Radiat. Meas. 90, 136 (2016)

    Article  CAS  Google Scholar 

  27. N. Kubota, M. Katagiri, K. Kamijo, H. Nanto, Nucl. Instrum. Methods Phys. Res. Sect. A 529, 321 (2004)

    Article  CAS  Google Scholar 

  28. K. Watanabe, M. Koshimizu, Y. Fujimoto, Y. Hayashi, H. Takizawa, T. Yanagida, K. Asai, Radiat. Meas. 106, 146 (2017)

    Article  CAS  Google Scholar 

  29. T. Yanagida, Y. Fujimoto, A. Yoshikawa, Y. Yokota, M. Miyamoto, H. Sekiwa, J. Kobayashi, T. Tokutake, K. Kamada, S. Maeo, IEEE Trans. Nucl. Sci. 57, 1325 (2010)

    Article  CAS  Google Scholar 

  30. M. Prakasam, O. Viraphong, D. Michau, A. Largeteau, Ceram. Int. 40, 1859 (2014)

    Article  CAS  Google Scholar 

  31. T. Kato, N. Kawano, G. Okada, N. Kawaguchi, T. Yanagida, Nucl. Instrum. Methods Phys. Res. Sect. B 435, 296 (2018)

    Article  CAS  Google Scholar 

  32. T. Yanagida, K. Kamada, Y. Fujimoto, H. Yagi, T. Yanagitani, Opt. Mater. 35, 2480 (2013)

    Article  CAS  Google Scholar 

  33. T. Yanagida, Y. Fujimoto, T. Ito, K. Uchiyama, K. Mori, Appl. Phys. Express 7, 062401 (2014)

    Article  CAS  Google Scholar 

  34. T. Yanagida, Y. Fujimoto, M. Arai, M. Koshimizu, T. Kato, D. Nakauchi, N. Kawaguchi, Sens. Mater. 32, 1351 (2020)

    CAS  Google Scholar 

  35. F.A. Selim, M.H. Weber, D. Solodovnikov, K.G. Lynn, Phys. Rev. Lett. 99, 1 (2007)

    Article  CAS  Google Scholar 

  36. A. Abdolahzadeh Ziabari, S.M. Rozati, Phys. B 407, 4512 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific B (19H03533, 21H03733 and 21H03736), Early-Career Scientists (20K15026 and 20K20104) and JSPS Fellows (20J23225) from Japan Society for the Promotion of Science. The Cooperative Research Project of Research Center for Biomedical Engineering, Nippon Sheet Glass Foundation, Yashima Environment Technology Foundation, and Hitachi Metals-Materials Science Foundation are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Kunikata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunikata, T., Kato, T., Shiratori, D. et al. Optical and scintillation properties of ZnO translucent ceramics annealed at different temperatures. J Mater Sci: Mater Electron 33, 2234–2241 (2022). https://doi.org/10.1007/s10854-021-07436-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07436-7

Navigation