Skip to main content
Log in

Investigation of charge and current dynamics in PVA–KOH gel electrolyte-based supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Poly-vinyl alcohol (PVA)-based electrolytes can play a vital role in the development of supercapacitors by providing a desirable charge separator layer with an added advantage of stretchable nature. These properties enable them as a global contender in wearable electronics and charge storage applications. In this study, the PVA-based electrolyte has been synthesized with potassium hydro-oxide (KOH) as ionic migration agent, which may enhance the electronic double-layers capacitance (EDLC) phenomena. In order to mechanically strengthen the graphene-based activated carbon, larger pore fabric is utilized for its encapsulation. Post-fabrication analysis of the supercapacitor using the standard imaging/microscopy techniques (scanning electron microscopy, electron-dispersive electroscope, and atomic force microscopy) are carried out as initial diagnostic test. For detailed electrical, optical, and charge-based evaluation, electrochemical impedance spectroscopy (EIS), Nyquist plot analysis, current–voltage (IV) measurements, charged deep-level transient spectroscopy (Q-DLTS), and photoluminescence spectroscopy (PLs) are performed. The fabricated supercapacitor took ~ 30 min to completely discharge itself at “full load operation.” The band diagram, at carrier transport levels, has also revealed the presence of two possible trap centers which may be responsible for the degradation and/or overall stability of the supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All data related to this article have been provided in this article.

[1] References

  1. Y. Zou, X. Hu, H. Ma, S.E. Li, Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. J. Power Sources 273, 793–803 (2015)

    CAS  Google Scholar 

  2. J. Cao, A. Emadi, A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles. IEEE Trans. Power Electron. 27(1), 122–132 (2011)

    Google Scholar 

  3. H.S. Das, M.M. Rahman, S. Li, C.W. Tan, Electric vehicles standards, charging infrastructure, and impact on grid integration: a technological review. Renew. Sustain. Energy Rev. 120, 109618 (2020)

    Google Scholar 

  4. L. Chen, Y. Tong, Z. Dong, Li-ion battery performance degradation modeling for the optimal design and energy management of electrified propulsion systems. Energies 13(7), 1629 (2020)

    CAS  Google Scholar 

  5. R. Wang, Y. Sun, K. Yang, J. Zheng, Y. Li, Z. Qian et al., One-time sintering process to modify xLi2MnO3(-x) LiMO2 hollow architecture and studying their enhanced electrochemical performances. J. Energy Chem. 50, 271–279 (2020)

    Google Scholar 

  6. R. Wang, X. Dai, Z. Qian, Y. Sun, S. Fan, K. Xiong et al., In situ surface protection for enhancing stability and performance of LiNi0.5Mn0.3Co0.2O2 at 48 V: the working mechanisms. ACS Mater. Lett. 2(4), 280–290 (2020)

    CAS  Google Scholar 

  7. B.R.V. Prasad, C. Prasanthi, G.J. Santhoshini, K.K. Kumar, K. Yernaidu, Smart electrical vehicle. i-Manag. J. Digit. Signal Process. 8(1), 7 (2020)

    Google Scholar 

  8. P. Thounthong, S. Raël, B. Davat, Control strategy of fuel cell and supercapacitors association for a distributed generation system. IEEE Trans. Ind. Electron. 54(6), 3225–3233 (2007)

    Google Scholar 

  9. G.L. Bullard, H.B. Sierra-Alcazar, H.L. Lee, J.L. Morris, Operating principles of the ultracapacitor. IEEE Trans. Magn. 25(1), 102–106 (1989)

    Google Scholar 

  10. G. Behzadi, H. Golnabi, Comparison of invasive and non-invasive cylindrical capacitive sensors for electrical measurements of different water solutions and mixtures. Sens. Actuators A 167(2), 359–366 (2011)

    CAS  Google Scholar 

  11. I.S. Ike, I. Sigalas, S. Iyuke, K.I. Ozoemena, RETRACTED: an overview of mathematical modeling of electrochemical supercapacitors/ultracapacitors. J. Power Sources 273, 264–277 (2015)

    CAS  Google Scholar 

  12. M. Seo, Y. Song, J. Kim, S.W. Paek, G.H. Kim, S.W. Kim, Innovative lumped-battery model for state of charge estimation of lithium-ion batteries under various ambient temperatures. Energy 226, 120301 (2021)

    Google Scholar 

  13. Y. Wang, K.L. Zhang, B.X. Zhang, C.J. Ma, W.L. Song, Z.L. Hou, M. Chen, Smart mechano-hydro-dielectric coupled hybrid sponges for multifunctional sensors. Sens. Actuators B Chem. 270, 239–246 (2018)

    CAS  Google Scholar 

  14. Y. Wang, X.D. Cheng, W.L. Song, C.J. Ma, X.M. Bian, M. Chen, Hydro-sensitive sandwich structures for self-tunable smart electromagnetic shielding. Chem. Eng. J. 344, 342–352 (2018)

    CAS  Google Scholar 

  15. W.L. Song, C. Gong, H. Li, X.D. Cheng, M. Chen, X. Yuan et al., Graphene-based sandwich structures for frequency selectable electromagnetic shielding. ACS Appl. Mater. Interfaces 9(41), 36119–36129 (2017)

    CAS  Google Scholar 

  16. Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016). https://doi.org/10.1039/C5CS00580A

    Article  CAS  Google Scholar 

  17. C. Shen, S. Xu, Y. Xie, M. Sanghadasa, X. Wang, L. Lin, A review of on-chip micro supercapacitors for integrated self-powering systems. J. Microelectromech. Syst. 26(5), 949–965 (2017)

    CAS  Google Scholar 

  18. F.E. Maher, S. Veronica, D. Sergey, B.K. Richard, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)

    Google Scholar 

  19. Y.J. Yang, Facile synthesis of poly (Safranine T)/reduced graphene oxide nanocomposite for supercapacitors with wide potential window in aqueous neutral electrolyte. Fullerenes Nanotubes Carbon Nanostruct. 24(4), 243–248 (2016)

    CAS  Google Scholar 

  20. A. Kumar, M. Khanuja, Template-free graphitic carbon nitride nanosheets coated with polyaniline nanofibers as an electrode material for supercapacitor applications. Renew. Energy 171, 1246–1256 (2021)

    CAS  Google Scholar 

  21. Z. Lv, Y. Tang, Z. Zhu, J. Wei, W. Li, H. Xia et al., Honeycomb-lantern-inspired 3D stretchable supercapacitors with enhanced specific areal capacitance. Adv. Mater. 30(50), 1805468 (2018)

    Google Scholar 

  22. Z. Lv, W. Li, L. Yang, X.J. Loh, X. Chen, Custom-made electrochemical energy storage devices. ACS Energy Lett. 4(2), 606–614 (2019)

    CAS  Google Scholar 

  23. E. Senokos, M. Rana, C. Santos, R. Marcilla, J.J. Vilatela, Controlled electrochemical functionalization of CNT fibers: structure-chemistry relations and application in current collector-free all-solid supercapacitors. Carbon 142, 599–609 (2019). https://doi.org/10.1016/j.carbon.2018.10.082

    Article  CAS  Google Scholar 

  24. M. Brza, S.B. Aziz, S. Raza Saeed, M.H. Hamsan, S.R. Majid, R.T. Abdulwahid et al., Energy storage behavior of lithium-ion conducting poly (vinyl alcohol) (PVA): chitosan (CS)-based polymer blend electrolyte membranes: preparation, equivalent circuit modeling, ion transport parameters, and dielectric properties. Membranes 10(12), 381 (2020)

    CAS  Google Scholar 

  25. J.I.C. Wong, S. Ramesh, H.K. Jun, C.W. Liew, Development of poly (vinyl alcohol)(PVA)-based sodium ion conductors for electric double-layer capacitors application. Mater. Sci. Eng.: B 263, 114804 (2021)

    CAS  Google Scholar 

  26. T. Ye, Y. Zou, W. Xu, T. Zhan, J. Sun, Y. Xia et al., Poorly-crystallized poly (vinyl alcohol)/carrageenan matrix: Highly ionic conductive and flame-retardant gel polymer electrolytes for safe and flexible solid-state supercapacitors. J. Power Sources 475, 228688 (2020)

    CAS  Google Scholar 

  27. S.T. Gunday, E. Cevik, I. Anil, O. Alagha, A. Bozkurt, High-temperature symmetric supercapacitor applications of anhydrous gel electrolytes including doped triazole terminated flexible spacers. J. Mol. Liq. 301, 112400 (2020)

    CAS  Google Scholar 

  28. Y. Yang, T. Zhu, C. Chi, L. Liu, J. Zheng, X. Gong, All-solid-state asymmetric supercapacitors with novel ionic liquid gel electrolytes. ACS Appl. Electron. Mater. 2(12), 3906–3914 (2020)

    CAS  Google Scholar 

  29. I. Zakariya’u, B. Gultekin, V. Singh, P.K. Singh, Electrochemical double-layer supercapacitor using poly (methyl methacrylate) solid polymer electrolyte. High Perform. Polym. 32(2), 201–207 (2020)

    Google Scholar 

  30. J.H. Jeong, Y.A. Kim, B.H. Kim, Electrospun polyacrylonitrile/cyclodextrin-derived hierarchical porous carbon nanofiber/MnO2 composites for supercapacitor applications. Carbon 164, 296–304 (2020)

    CAS  Google Scholar 

  31. S. Mathela, B. Sangwan, P.S. Dhapola, P.K. Singh, R. Tomar, Ionic liquid incorporated poly (ethylene oxide) (PEO) doped with potassium iodide (KI) solid polymer electrolyte for energy device, in Materials Today: Proceedings (2021)

  32. P. Pazhamalai, K. Krishnamoorthy, V.K. Mariappan, S. Sahoo, S. Manoharan, S.J. Kim, A high efficacy self-charging MoSe2 solid-state supercapacitor using electrospun nanofibrous piezoelectric separator with ionogel electrolyte. Adv. Mater. Interfaces 5(12), 1800055 (2018)

    Google Scholar 

  33. X. Peng, H. Liu, Q. Yin, J. Wu, P. Chen, G. Zhang et al., A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat. Commun. 7(1), 1–8 (2016)

    Google Scholar 

  34. X. Peng, H. Liu, Q. Yin, J. Wu, P. Chen, G. Zhang, G. Liu, C. Wu, Y. Xie, A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat. Commun. 7, 11782 (2016)

    CAS  Google Scholar 

  35. C. Xu, D. Zhang, Multifunctional structural supercapacitor based on cement/PVA-KOH composite and graphene. J. Compos. Mater. 55(10), 1359–1369 (2021)

    CAS  Google Scholar 

  36. D.P. Dubal, R. Holze, All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolyte. Energy 51, 407–412 (2013)

    CAS  Google Scholar 

  37. B. Karaman, E. Çevik, A. Bozkurt, Novel flexible Li-doped PEO/copolymer electrolytes for supercapacitor application. Ionics 25(4), 1773–1781 (2019)

    CAS  Google Scholar 

  38. F. Zhao, Y. Shi, L. Pan, G. Yu, Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications. Acc. Chem. Res. 50(7), 1734–1743 (2017)

    CAS  Google Scholar 

  39. L. Chen, D. Li, L. Chen, P. Si, J. Feng, L. Zhang et al., Core-shell structured carbon nanofibers yarn@ polypyrrole@ graphene for high performance all-solid-state fiber supercapacitors. Carbon 138, 264–270 (2018)

    CAS  Google Scholar 

  40. X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao et al., Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016)

    CAS  Google Scholar 

  41. S.U.N. Zihong, Y.U.A.N. Anbao, Electrochemical performance of nickel hydroxide/activated carbon supercapacitors using a modified polyvinyl alcohol based alkaline polymer electrolyte. Chin. J. Chem. Eng. 17(1), 150–155 (2009)

    Google Scholar 

  42. M.E. Fouda, A. Allagui, A.S. Elwakil, A. Eltawil, F. Kurdahi, Supercapacitor discharge under constant resistance, constant current and constant power loads. J. Power Sources 435, 226829 (2019)

    CAS  Google Scholar 

  43. https://www.avrfreaks.net/forum/input-impedance-digital-ios-atmega328p

  44. H.U. Rehman, A. Shuja, M. Ali, I. Murtaza, H. Meng, Evaluation of defects and current kinetics for aging analysis of PEDOT: PSS based supercapacitors. J. Energy Storage 28, 101243 (2020)

    Google Scholar 

  45. A.B. Cultura, Z.M. Salameh, Modeling, evaluation and simulation of a supercapacitor module for energy storage application, in International Conference on Computer Information Systems and Industrial Applications (Atlantis Press, 2015)

  46. B.A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, Physical interpretations of Nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 122(1), 194–206 (2018)

    CAS  Google Scholar 

  47. M. Ali, S. Ahmed, F. Younus, Z. Ali, Electrical, charge transients and photo response study of as-deposited and phosphorus implanted Cd1xZnxTe devices for PV applications. Radiat. Phys. Chem. 166, 108498 (2020)

    CAS  Google Scholar 

  48. I. Haider, B. Khan, M. Ali, A. Shuja, A.F. Qureshi, Z. Ali, Influence of device deposition techniques on the process optimization of CdZnTe thin-film matrix using charge-based analysis. Mater. Sci. Semicond. Process. 114, 105074 (2020)

    CAS  Google Scholar 

  49. K. Hussain, A. Shuja, M. Ali, S. Fahad, Carrier removal and transport in photonic integrated circuit ready InGaAsP/InP substrate: Electrical and transients of charges evaluation. Mater. Sci. Semicond. Process. 121, 105384 (2021)

    CAS  Google Scholar 

  50. S. Fahad, M. Noman, A.F. Qureshi, M. Ali, S. Ahmed, Defect mapping of active layer of CdTe solar cells using charge deep level transient spectroscopy (Q-DLTS). Eng. Fail. Anal. 119, 104991 (2021)

    CAS  Google Scholar 

  51. S.B. Aziz, Modifying poly (vinyl alcohol) (PVA) from insulator to small-bandgap polymer: a novel approach for organic solar cells and optoelectronic devices. J. Electron. Mater. 45(1), 736–745 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Pakistan Science Foundation under the provision of PSF-NSFC grant (PSF/NSFC-II/ENG/C-IIUI-06). We are accordingly acknowledge Dr. Saba Ashraf for providing technical support throughout this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hafeez Ur-Rehman or Ahmed Shuja.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ur-Rehman, H., Shuja, A., Ali, M. et al. Investigation of charge and current dynamics in PVA–KOH gel electrolyte-based supercapacitor. J Mater Sci: Mater Electron 33, 2322–2335 (2022). https://doi.org/10.1007/s10854-021-07432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07432-x

Navigation