Skip to main content
Log in

Influence of composition ratio on the thermal performance of AlNB nanocomposite for an efficient heat spreading in solid-state lighting package (LED)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The demand for higher flux in light emitting diodes (LEDs) is associated with an increase in current density which impliedly leads to higher junction temperatures which affect the LEDs performance and operational life. It can be mitigated by minimizing the thermal path through the development and introduction of solid thermal interface material such as dielectric base. Consequently, the growth of AlNB composite based on varied Aluminium (Al) and Boron (B) thickness ratios (Al1−XNBX) for heat mitigation through heat spreading was performed using the reactive sputtering technique in N2:Ar gas ratios of 12:8 on Al substrates and annealed at 400 °C in N2 ambient. The surface microstructure and their variations are analyzed and observed the roughness in the range from 82 to 227 nm with an average particle size of ~ 200 nm. Surface cracks and thickness are measured from SEM analysis, while the structural characterization conducted by XRD confirmed the presence of Cubic aluminium nitride (c-AlN) (200 and 220), cubic boron nitride (c-BN) (111) and cubic aluminium (c-Al) (111 and 311) phases, respectively. The AlN and BN phases are also confirmed by FTIR spectra between ~ 545 and 1672 cm−1. Using the cumulative structure–function analysis, the noticeable reduction in total thermal resistance (Rthj-a) along the thermal path of the high power LED package is observed to be ~ 5.97 K/W compared with that of a bare aluminium substrate with 10.37 K/W. The lowest interfacial thermal resistance within the samples is found to be ~ 1.77 K/W and thus, the prepared AlNB composite highly recommended for effective heat spreading applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. LED Lighting Market Size, Share & Trends Analysis Report By End-use (Residential, Commercial), By Product (Lamps, Luminaires), By Application (Indoor, Outdoor), By Region, And Segment Forecasts, 2021–2028 (2021), https://www.grandviewresearch.com/industry-analysis/led-lighting-market. Accessed 20 July 2021

  2. A.H. El-ladan, S. Subramani, Growth and performance analysis of BAlN alloy thin film on Al substrate as a heat spreader for effective thermal management applications on white-based high-power LED. Appl. Phys. A 127, 540 (2021). https://doi.org/10.1007/s00339-021-04617-3

    Article  CAS  Google Scholar 

  3. A.H. El-ladan, S. Subramani, Development of AlNB alloy in (Al/AlN/B) stacking sequence using RF reactive sputtering towards thermal management application. J. Mater. Sci. Mater. Electron. 32, 577–589 (2021). https://doi.org/10.1007/s10854-020-04840-3

    Article  CAS  Google Scholar 

  4. A.H. El-ladan, S. Subramani, synthesis and investigation of AlNB composite prepared by stacking methods for LED thermal management application ‘Unpublished Thesis Result’

  5. G. Ke, Y. Tao, Y. Lu, Y. Bian, T. Zhu, H. Guo, Y. Chen, Highly c-axis oriented AlN film grown by unbalanced magnetron reactive sputtering and its electrical properties. J. Alloys Compd. 646, 446–453 (2015). https://doi.org/10.1016/j.jallcom.2015.05.174

    Article  CAS  Google Scholar 

  6. B.D. Hahn, Y. Kim, C.W. Ahn, J.J. Choi, J. Ryu, J.W. Kim, W.H. Yoon, D.S. Park, S.Y. Yoon, B. Ma, Fabrication and characterization of aluminium nitride thick film coated on aluminium substrate for heat dissipation. Ceram. Int. 42, 18141–18147 (2016). https://doi.org/10.1016/j.ceramint.2016.08.128

    Article  CAS  Google Scholar 

  7. A. Kumar, R.P. Yadav, V. Janyani, M. Prasad, Structural study of aluminium nitride thin film grown by radio frequency sputtering technique, in 2017 International Conference on Computer, Communications and Electronics (Comptelix). (IEEE, Jaipur, 2017), pp. 532–535. https://doi.org/10.1109/COMPTELIX.2017.8004027

    Chapter  Google Scholar 

  8. Y. Lan, Y. Shi, K. Qi, Z. Ren, H. Liu, Fabrication and characterization of single-phase a-axis AlN ceramic films. Ceram. Int. 44, 8257–8262 (2018). https://doi.org/10.1016/j.ceramint.2018.02.007

    Article  CAS  Google Scholar 

  9. K. Sato, H. Horibe, T. Shirai, Y. Hotta, H. Nakano, H. Nagai, K. Mitsuishid, K. Wataria, Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. J. Mater. Chem. 20, 2749–2752 (2010). https://doi.org/10.1039/B924997D

    Article  CAS  Google Scholar 

  10. K. Gordon, Thermal-management-of-white-leds.pdf US. DOE (2007), https://www1.eere.energy.gov/buildings/publications/pdfs/ssl/thermal_led_feb07_2.pdf, Accessed 28 June 2021

  11. S. Subramani, M. Devarajan, Structural and surface analysis of chemical vapor deposited boron-doped aluminum nitride thin film on aluminum substrates. Mat. Sci.—Poland 37(3), 395–403 (2019). https://doi.org/10.2478/msp-2019-0056

    Article  CAS  Google Scholar 

  12. M.S. Idris, S. Subramani, Performance of 9.0 W light-emitting diode on various layers of magnesium oxide thin film thermal interface materia. Appl. Phy. A. 126, 646 (2020). https://doi.org/10.1007/s00339-020-03820-y

    Article  CAS  Google Scholar 

  13. M. Sundararajan, S. Subramani, M. Devarajan, M. Jaafar, Synthesis and analysis of anodic aluminum oxide-nanopore structure on Al substrates for efficient thermal management in electronic packaging. J. Mat. Sci. Mat. Electron. 31, 9641–9649 (2020). https://doi.org/10.1007/s10854-020-03507-3

    Article  CAS  Google Scholar 

  14. N.J.A. Jamaludin, S. Subramani, Thermal performance of LED fixed on CVD processed ZnO thin film on Al substrates at various O2 gas flow rates. AIMS. Mat. Sci. 5(2), 246–256 (2018). https://doi.org/10.3934/matersci.2018.2.246

    Article  CAS  Google Scholar 

  15. Z. Ong, S. Subramani, M. Devarajan, Thermal performance on born doped aluminium nitride thin film coated copper substrate of high power LED. J. Sci. Res. Rep. 5(2), 109–119 (2015). https://doi.org/10.9734/JSRR/2015/14232

    Article  Google Scholar 

  16. Z. Habibaha, A.N. Arshad, L.N. Ismail, R.A. Bakar, M. Rusop, Chemical solution deposited magnesium oxide films: influence of deposition time on electrical and structural properties. Pro. Eng. 56, 737–742 (2013). https://doi.org/10.1016/j.proeng.2013.03.187

    Article  CAS  Google Scholar 

  17. Lovkush, C. Ravikant, P. Arun, Plasmon coupling and aging effect in CsCl–Ag thin films. Mat. Res. Express 5(9), 6405 (2018). https://doi.org/10.1088/2053-1591/aad665

    Article  CAS  Google Scholar 

  18. V.Y. Davydov, Y.E. Kitaev, I.N. Goncharuk et al., Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 58, 1289 (1988). https://doi.org/10.1103/PHYSREVB.58.12899

    Article  Google Scholar 

  19. V.P. Filonenkoa, V.A. Davydova, I.P. Zibrovb, V.N. Agafonovc, V.N. Khabashesku, High pressure synthesis of new heterodiamond phase. Diam & Rel Mat 19, 541–544 (2010). https://doi.org/10.1016/j.diamond.2009.12.010

    Article  CAS  Google Scholar 

  20. B. Singh, G. Kaur, P. Singh, K. Singh, B. Kumar, A. Vij, M. Kumar, R. Bala, R. Meena, A. Singh, A. Thakur, A. Kumar, Nanostructured boron nitride with high water dispersibility for boron neutron capture therapy. Sci. Rep. 6(1), 1–10 (2016). https://doi.org/10.1038/srep35535

    Article  CAS  Google Scholar 

  21. J. Ying, X.W. Zhang, Z.G. Yin, H.R. Tan, S.G. Zhang, Y.M. Fan, Electrical transport properties of the Si-doped cubic boron nitride thin films prepared by in situ cosputtering. J. Appl. Phys. 109, 023716 (2011). https://doi.org/10.1063/1.3544065

    Article  CAS  Google Scholar 

  22. Z. Yongnian, Z. Bing, H. Zhi, T. Yanchun, Z. Guangtian, Infrared spectroscopy investigation of cubic boron nitride films. Spect. Lett. 31(5), 945–954 (1998). https://doi.org/10.1080/00387019808003273

    Article  CAS  Google Scholar 

  23. V. von, S¨. Eyhusen and Karlsruhe, Phase formation processes in the synthesis of boron nitride thin films, Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨aten der Georg-August-Universit¨at zu G¨ottingen (2005)

  24. Khavryuchenko, V. Oleksiy, S.A. Alekseev, A.S. Beobide, G. Kandilioti, G.A. Voyiatzis, V.V. Lisnyak, Combined vibrational spectroscopic and theoretical study on nature of c-BN powders surface. J. Phys. Chem. C 114(2), 1102–1109 (2010). https://doi.org/10.1021/JP908711X

    Article  CAS  Google Scholar 

  25. X. Pian, G. Shao, B. Fan, H. Chen, C. Wang, R. Zhang, Rapid densification of SiC ceramic rollers by microwave sintering. Adv. Appl. Ceram. 114(1), 28–32 (2015). https://doi.org/10.1179/1743676114Y.0000000181

    Article  CAS  Google Scholar 

  26. W. Hana, M. Chena, W. Songa, C. Gea, X. Zhanga, Construction of hexagonal boron nitride@polystyrene nanocomposite with high thermal conductivity for thermal management application. Ceram. Int. 46(6), 7595–7601 (2020). https://doi.org/10.1016/j.ceramint.2019.11.259

    Article  CAS  Google Scholar 

  27. X. Li, S. Sundaram, Y. El Gmili, T. Moudakir, F. Genty, S. Bouchoule, G. Patriarche, R.D. Dupuis, P.L. Voss, J. Salvestrini, A. Ougazzaden, BAlN thin layers for deep UV applications. Phys. Stat. Solidi A 212(4), 745–750 (2015). https://doi.org/10.1002/pssa.201400199

    Article  CAS  Google Scholar 

  28. M. Imura, Y. Ota, R.G. Banal, M. Liao, Y. Nakayama, M. Takeguchi, Y. Koide, Effect of boron incorporation on structural and optical properties of AlN layers grown by metal-organic vapor phase epitaxy. Phy. Stat. Solidi 215, 21 (2018). https://doi.org/10.1002/pssa.201800282

    Article  CAS  Google Scholar 

  29. Understanding the difference between thermal impedance and thermal conductivity (2020), https://www.thermalspray.com/understanding-the-difference-between-thermal-impedance-and-thermal-conductivity/. Accessed 29 Apr 2020

  30. K.P. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, T. Balasubramanian, Influence of grain size on the properties of AlN doped ZnO thin film. Mat. Sci. Sem. Process. 14, 84–88 (2011). https://doi.org/10.1016/j.mssp.2011.01.005

    Article  CAS  Google Scholar 

  31. Introduction to Roughness (2010), https://www.keyence.com/ss/products/microscope/roughness/line/. Accessed 20 July 2021

Download references

Acknowledgements

The first author would like to acknowledge Umaru Musa Yardua University, Katsina State and the TetFund Nigeria for research scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanmugan Subramani.

Ethics declarations

Conflict of interest

On behalf of all the authors and the research institutions, there are not any conflict of interest financially, non-financially, directly, or indirectly related to the research work, the authors or between the authors and their research institution.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-ladan, A.H., Subramani, S. Influence of composition ratio on the thermal performance of AlNB nanocomposite for an efficient heat spreading in solid-state lighting package (LED). J Mater Sci: Mater Electron 33, 2183–2191 (2022). https://doi.org/10.1007/s10854-021-07425-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07425-w

Navigation