Skip to main content
Log in

Structural, optical, photoluminescence, photocatalytic and antifungal features of Gd/Mn2SnO4 nanocomposite annealed at different temperatures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work describes comparative study of annealing temperature in the range of 500–900 °C on the successful synthesis of Gd/Mn2SnO4 nanocomposite via sol gel method followed by hydrothermal method. Structural, optical, photoluminescence, photocatalytic activities against methylene blue and methyl orange; and antifungal features against Aspergillus niger of Gd/Mn2SnO4 nanocomposite were studied. The structural and optical properties were investigated using X-ray diffraction (XRD), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), UV–Visible spectroscopy and particle size analyzer (PSA) techniques. Crystallite size, particle size and optical band gap were calculated using XRD, PSA and Uv–visible spectroscopy, respectively. Gd/Mn2SnO4 nanocomposite annealed at 500 °C is found to be a competent photo catalyst for degradation of dyes used for the study and for the growth inhibition of Aspergillus niger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Javaid, M.A. Farrukh, I. Muneer, M. Shahid, M. Khaleeq-ur-Rahman, A.A. Umar, Influence of optical band gap and particle size on the catalytic properties of Sm/SnO2–TiO2 nanoparticles. Superlattice. Microst. 82, 234–247 (2015)

    Article  CAS  Google Scholar 

  2. M.A. Farrukh, K.M. Butt, K.-K. Chong, W.S. Chang, Photoluminescence emission behavior on the reduced band gap of Fe doping in CeO2-SiO2 nanocomposite and photophysical properties. J. Saudi Chem. Soc. 23(5), 561–575 (2018)

    Article  Google Scholar 

  3. Farrukh, M. A.; Shahid, M. Muneer, I.; Javaid, S.; Khaleeq-ur-Rahman, M. Influence of gadolinium precursor on the enhanced red shift of Gd/SnO2–TiO2 nanoparticles and catalytic activity, J. Mater. Sci.: Mater. Electron 2016, 27(3), 2994–3002.

  4. F. Gu, S.F. Wang, M.K. Lü, G.J. Zhou, D. Xu, D.R. Yuan, Photoluminescence properties of SnO2 Nanoparticles synthesized by Sol−Gel method. J. Phys. Chem. B 108, 8119–8123 (2004)

    Article  CAS  Google Scholar 

  5. Mani, R.; Vivekanandan, K.; Vallalperuman, K., Synthesis of pure and cobalt (Co) doped SnO2 nanoparticles and its structural, optical and photocatalytic properties, J. Mater. Sci.: Mater. Electron 2017, 28(5), 4396–4408.

  6. A. Navrotsky, Energetics of nanoparticle oxides: interplay between surface energy and polymorphism. Geochem. Trans. 4(1), 34 (2003)

    Article  Google Scholar 

  7. A. Hassanjani-Roshan, M.R. Vaezi, A. Shokuhfar, Z. Rajabali, Synthesis of iron oxide nanoparticles via sonochemical method and their characterization. Particuology 9(1), 95–99 (2011)

    Article  CAS  Google Scholar 

  8. D.-F. Zhang, L.-D. Sun, C.-J. Jia, Z.-G. Yan, L.-P. You, C.-H. Yan, Hierarchical assembly of SnO2 nanorod arrays on α-Fe2O3 nanotubes: a case of interfacial lattice compatibility. J. Am. Chem. Soc 127(39), 13492–13493 (2005)

    Article  CAS  Google Scholar 

  9. P. Sun, C. Wang, J. Liu, X. Zhou, X. Li, X. Hu, G. Lu, Hierarchical assembly of α-Fe2O3 nanosheets on SnO2 hollow nanospheres with enhanced ethanol sensing properties. ACS Appl. Mater. Interfaces 7(34), 19119–19125 (2015)

    Article  CAS  Google Scholar 

  10. Y. Wang, Solar photocatalytic degradation of eight commercial dyes in TiO2 suspension. Water Res. 34(3), 990–994 (2000)

    Article  CAS  Google Scholar 

  11. H. Yang, Y. Hu, X. Zhang, G. Qiu, Mechanochemical synthesis of cobalt oxide nanoparticles. Mater. Lett. 58(3), 387–389 (2004)

    Article  CAS  Google Scholar 

  12. E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, The effect of dopant concentration on properties of transparent conducting Al-doped ZnO thin films for efficient Cu2ZnSnS4 thin-film solar cells prepared by electrodeposition method. Appl. Nanosci. 5(8), 993–1001 (2015)

    Article  CAS  Google Scholar 

  13. R. Adnan, N.A. Razana, I.A. Rahman, M.A. Farrukh, Synthesis and characterization of high surface area tin oxide nanoparticles via the sol-gel method as a catalyst for the hydrogenation of styrene. J. Chin. Chem. Soc. 57(2), 222–229 (2010)

    Article  CAS  Google Scholar 

  14. N. Aslam, M.A. Farrukh, S. Karim, Sensitization of Sm/SnO2 - SiO2 nanocomposite with zwitterionic surfactant for enhanced photocatalytic performance under sunlight. Russ. J. Phys. Chem. A. 93(8), 1610–1619 (2019)

    Article  Google Scholar 

  15. T. Ahmad, K.V. Ramanujachary, S.E. Lofland, A.K. Ganguli, Nanorods of manganese oxalate: a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4). J. Mater. Chem. 14(23), 3406–3410 (2004)

    Article  CAS  Google Scholar 

  16. M.T. Swihart, Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid. Interface. Sci. 8(1), 127–133 (2003)

    Article  CAS  Google Scholar 

  17. S. Singh, M. Chawla, P.F. Siril, G. Singh, Manganese oxalate nanorods as ballistic modifier for composite solid propellants. Thermochim. Acta 597, 85–92 (2014)

    Article  CAS  Google Scholar 

  18. B. Venugopal, B. Nandan, A. Ayyachamy, V. Balaji, S. Amirthapandian, B.K. Panigrahi, T. Paramasivam, Influence of manganese ions in the band gap of tin oxide nanoparticles: structure, microstructure and optical studies. RSC Adv. 4(12), 6141–6150 (2014)

    Article  CAS  Google Scholar 

  19. N. Salah, S. Habib, A. Azam, M.S. Ansari, W.M. Al-Shawafi, Formation of Mn-Doped SnO2 nanoparticles via the microwave technique: structural, optical and electrical properties. Nanomater. Nanotechnol. 6(17), 1–8 (2016)

    Google Scholar 

  20. F. Zhang, S.-W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, I.P. Herman, Cerium oxide nanoparticles: size-selective formation and structure analysis. App. Phy. Lett. 80(1), 127–129 (2002)

    Article  CAS  Google Scholar 

  21. R. Raza, X. Wang, Y. Ma, X. Liu, B. Zhu, Improved ceria–carbonate composite electrolytes. Int. J. Hydrog. Energ. 35(7), 2684–2688 (2010)

    Article  CAS  Google Scholar 

  22. L. Carrette, K.A. Friedrich, U. Stimming, Fuel cells – fundamentals and applications. Fuel Cells 1(1), 5–39 (2001)

    Article  CAS  Google Scholar 

  23. L. Carrette, K.A. Friedrich, U. Stimming, Fuel cells: principles, types, fuels, and applications. Chem. Phys. Che. 1(4), 162–1936 (2000)

    CAS  Google Scholar 

  24. Fan, L., Zhu, B., Chen, M., Wang, C. Raza, R., Qin, H., Wang, X., Wang, X., Ma, Y. High performance transition metal oxide composite cathode for low temperature solid oxide fuel cells,J. Power Sources 2012,30, 65–71.

  25. S.P. Jiang, Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges. Int. J. Hydrogen Energy 37(1), 449–470 (2012)

    Article  CAS  Google Scholar 

  26. Farrukh, M. A., Muneer, I. Butt, K. M., Batool, S., Fakhar, N. Effect of dielectric constant of solvents on the particle size and bandgap of La/SnO2-TiO2 nanoparticles and their catalytic properties, J. Chin. Chem. Soc. 2016, 63(12), 952−959

  27. I. Muneer, M.A. Farrukh, S. Javaid, M. Shahid, M. Khaleeq-ur-Rahman, Synthesis of Gd2O3/Sm2O3 nanocomposite via sonication and hydrothermal methods and its optical properties. Superlattice. Micros. 77, 256–266 (2015)

    Article  CAS  Google Scholar 

  28. Perveen, S., Farrukh, M. A. Influence of lanthanum precursors on the heterogeneous La/SnO2–TiO2 nanocatalyst with enhanced catalytic activity under visible light, J. Mater. Sci.: Mater. Electron 2017, 28 (15), 10806–10818.

  29. Afzaal, A., Farrukh, M. A. Zwitterionic surfactant assisted synthesis of Fe doped SnO2-SiO2 nanocomposite with enhanced photocatalytic activity under sun light, Mater. Sci. Eng.: B 2017, 223, 167–177.

  30. Butt, K. M., Farrukh, M. A., Muneer, I. Influence of lanthanum doping via hydrothermal and reflux methods on the SnO2–TiO2 nanoparticles prepared by sol–gel method and their catalytic properties, J. Mater. Sci.: Mater. Electron 2016, 27(8), 8493–8498.

  31. Premkumar, V. K., Dinesh, S., Sivakumar, G., Mohanraj, K. Facile hydrothermally synthesized mesoporous manganous stannate (Mn2SnO4) nanoparticles and its electrochemical properties, Mater. Res. Express 2017, 4(12), 125010.

  32. Muneer, I., Farrukh, M. A., Raza, R. Influence of annealing temperature on the physical and photoelectric properties of Gd/Fe1.727Sn0.205O3 nanoparticles for solid oxides fuel cell application, J. Sol-Gel Sci. Tech. 2020, 94(1), 98–108.

  33. X. Shi, X. Lin, S. Liu, A.C. Li, Z. Xiaohong, M.Z. Jisheng, H. Song, Flake-like carbon coated Mn2SnO4 nanoparticles as anode material for lithium-ion batteries. Chem. Eng. J. 372, 269–276 (2019)

    Article  CAS  Google Scholar 

  34. M.S. Arshad, R. Raza, M.A. Ahmad, G. Abbas, A. Ali, A. Rafique, M.K. Ullah, S. Rauf, M.I. Asghar, N. Mushtaq, S. Atiq, S. Naseem, An efficient Sm and Ge co-doped ceria nanocomposite electrolyte for low temperature solid oxide fuel cells. Ceram. Int. 44(1), 170–174 (2018)

    Article  CAS  Google Scholar 

  35. M.A. Farrukh, K.M. Butt, A. Altaf, S. Khadim, Influence of pH and temperature on structural, optical and catalytical investigations of CeO2-SiO2 nanoparticles. SILICON 11, 2591–2598 (2019)

    Article  CAS  Google Scholar 

  36. D. Dodoo-Arhin, F. Buabeng, M. Paakwah, M. Julius, P. Amaniampong, A. Nana, N. Henry, O. Emmanuel, O. David, N.Y. Asiedu, The effect of titanium dioxide synthesis technique and its photocatalytic degradation of organic dye pollutants. Heliyon 4(7), 681 (2018)

    Article  Google Scholar 

  37. D. Ali, M.Z. Butt, I. Muneer, M.A. Farrukh, M. Aftab, M. Saleem, F. Bashir, A.U. Khan, Synthesis and characterization of sol-gel derived La and Sm doped ZnO thin films: a solar light photo catalyst for methylene blue. Thin Solid Films 679, 86–89 (2019)

    Article  CAS  Google Scholar 

  38. S.H.S. Chan, W. Yeong, J. Ta, C. Joon, C.Y. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol. 86(9), 1130–1158 (2011)

    Article  CAS  Google Scholar 

  39. S. Ali, M.A. Farrukh, Effect of calcination temperature on the structural, thermodynamic, and optical properties of MoO3 nanoparticles. J. Chin. Chem. Soc. 65(2), 276–288 (2018)

    Article  CAS  Google Scholar 

  40. Julkapli, N. M., Bagheri, S.,; Hamid, S. B. A. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes, Sci. World J. 2014, 2014 692307.

  41. R. Kumar, G. Kumar, A. Umar, ZnO nano-mushrooms for photocatalytic degradation of methyl orange. Mat. Lett. 97, 100–103 (2013)

    Article  CAS  Google Scholar 

  42. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard. Mater. 170(2), 520–529 (2009)

    Article  CAS  Google Scholar 

  43. F.E. Ghodsi, J. Mazloom, Optical, electrical and morphological properties of p-type Mn-doped SnO2 nanostructured thin films prepared by sol–gel process. Appl. Phy. A 108(3), 693–700 (2012)

    Article  CAS  Google Scholar 

  44. R. Raza, X. Wang, Y. Ma, X. Liu, B. Zhu, Improved ceria–carbonate composite electrolytes. Int. J. Hydrogen Energy 35(7), 2684–2688 (2010)

    Article  CAS  Google Scholar 

  45. T.K. Jana, S.K. Maji, A. Pal, R.P. Maiti, T.K. Dolai, K. Chatterjee, Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology. J. Colloid Interface Sci. 480, 9–16 (2016)

    Article  CAS  Google Scholar 

  46. A. Erkan, U. Bakir, G. Karakas, Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. J. Photochem. Photobiol. A 184(3), 313–321 (2006)

    Article  CAS  Google Scholar 

  47. L. Liu, B. Zhang, Y. Zhang, Y. He, L. Huang, S. Tan, X. Cai, Simultaneous removal of cationic and anionic dyes from environmental water using montmorillonite-pillared graphene oxide. J. Chem. Eng. Data 60(5), 1270–1278 (2015)

    Article  CAS  Google Scholar 

  48. K. Tanaka, K. Padermpole, T. Hisanaga, Photocatalytic degradation of commercial azo dyes. Water Res. 34(1), 327–333 (2000)

    Article  CAS  Google Scholar 

  49. N.P. Raval, P.U. Shah, N.K. Shah, Malachite green “a cationic dye” and its removal from aqueous solution by adsorption. App. Water Sci. 7(7), 3407–3445 (2017)

    Article  CAS  Google Scholar 

  50. L. Devi, N. Kottam, B.N. Murthy, S. Kumar, Enhanced photocatalytic activity of transition metal ions Mn+2, Ni+2 and Zn+2 doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light. J. Mol. Catal. A: Chem. 328, 44–52 (2010)

    Article  CAS  Google Scholar 

  51. A.S. Ahmed, A. Azam, S.M. Muhamed, M. Chaman, S. Tabassum, Temperature dependent structural and optical properties of tin oxide nanoparticles. J. Phy. Chem. Solids 73(7), 943–947 (2012)

    Article  CAS  Google Scholar 

  52. K.K. Nanda, S.N. Sarangi, S. Mohanty, S.N. Sahu, Optical properties of CdS nanocrystalline films prepared by a precipitation technique. Thin Solid Films 322(1), 21–27 (1998)

    Article  CAS  Google Scholar 

  53. H.J. Lee, J.H. Kim, S.S. Park, S.S. Hong, G.D. Lee, Degradation kinetics for photocatalytic reaction of methyl orange over Al-doped ZnO nanoparticles. J. Ind. Eng. Chem. 25, 199–206 (2015)

    Article  CAS  Google Scholar 

  54. T. Yu, X. Tan, L. Zhao, Y. Yin, P. Chen, J. Wei, Characterization, activity and kinetics of a visible light driven photocatalyst: Cerium and nitrogen co-doped TiO2 nanoparticles. Chem. Eng. J. 157(1), 86–92 (2010)

    Article  CAS  Google Scholar 

  55. R. Dhanabal, S. Velmathi, A.C. Bose, High-efficiency new visible light-driven Ag2MoO4–Ag3PO4 composite photocatalyst towards degradation of industrial dyes. Catal. Sci. Technol 6(24), 8449–8463 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author (Muhammad Akhyar Farrukh) would like to thank Higher Education Commission (HEC) Pakistan for providing funds through Project No. 20-3142/NRPU/R&D/HEC/ & Project No. 20-2660/NRPU/R&D/HEC/ and The World Academy of Sciences (TWAS), Italy. TWAS Research Grant No. 11-028 RG/MSN/AS_C to establish Nano-Chemistry Lab at GC University Lahore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akhyar Farrukh.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muneer, I., Farrukh, M.A. Structural, optical, photoluminescence, photocatalytic and antifungal features of Gd/Mn2SnO4 nanocomposite annealed at different temperatures. J Mater Sci: Mater Electron 33, 1263–1279 (2022). https://doi.org/10.1007/s10854-021-07420-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07420-1

Navigation