Skip to main content
Log in

IV-curve and structural studies of the composite mixture of reduced graphene oxide and silver nanopowders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanoparticles today have the upper hand in its manufacturing desirability in more or less every aspect of the working areas, from industrial and commercial to self-care products. In this paper, the applicational prospects of varistors for the composite mixture of rGO and Ag-nanopowders were studied via samples with varying compositions. Hummers modified method and burst method were employed for the synthetisation of GO, rGO, and Ag-nanopowders, respectively. The structural nature and electrical behaviour were understood by the means of variegated characterisations. The purity of GO and rGO were confirmed via Raman analysis. XRD and FTIR exhibited the attributed peak values for GO and rGO, Ag-nanopowders. The topographical and elemental details were acquired through FESEM and EDX studies, which talked about the wrinkled paper-like structure for GO and rGO and spherical structural nature of Ag. Current–voltage plot was studied for the better understanding of the electrical inhabitation. It was observed that rGO + Ag, being two constituent networks, gave small values but still showed an increase, which means if used with complex arrangement, they have the possibility to be considered in the material fabrication for high-voltage varistors domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Biswas, C. Wu, Nanoparticles and the environment. J. Air Waste Manage. Assoc. 55(6), 708–746 (2005)

    CAS  Google Scholar 

  2. M. De, P.S. Ghosh, V.M. Rotello, Applications of nanoparticles in biology. Adv. Mater. 20(22), 4225–4241 (2008)

    CAS  Google Scholar 

  3. M.A.M. Khan, S. Kumar, M. Ahamed, S.A. Alrokayan, M.S. AlSalhi, Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res. Lett. 6(1), 1–8 (2011)

    CAS  Google Scholar 

  4. Y. Zhang, Y. Chen, P. Westerhoff, K. Hristovski, J.C. Crittenden, Stability of commercial metal oxide nanoparticles in water. Water Res. 42(8–9), 2204–2212 (2008)

    CAS  Google Scholar 

  5. I. Matsui, Nanoparticles for electronic device applications: a brief review. J. Chem. Eng. Japan 38(8), 535–546 (2005)

    CAS  Google Scholar 

  6. R. Danzer, B. Kaufmann, P. Supancic, Failure of high power varistor ceramic components. J. Eur. Ceram. Soc. 40(11), 3766–3770 (2020)

    CAS  Google Scholar 

  7. S. Mohammadi Aref, A. Olad, M. Parhizkar, M. Ghafouri, H. Bidadi, Effect of polyaniline content on electrophysical properties of gallium arsenide-polymer composite varistors. Solid State Sci. 26, 128–133 (2013)

    CAS  Google Scholar 

  8. S. Borini et al., Ultrafast graphene oxide humidity sensors. ACS Nano 7(12), 11166–11173 (2013)

    CAS  Google Scholar 

  9. S. Paszkiewicz et al., Functional properties of poly(trimethylene terephthalate)-block-poly(caprolactone) based nanocomposites containing graphene oxide (go) and reduced graphene oxide (rgo). Nanomaterials 9(10), 1459 (2019)

    CAS  Google Scholar 

  10. S.Y. Park et al., Room temperature humidity sensors based on rGO/MoS2 hybrid composites synthesized by hydrothermal method. Sen. Actuators B 258, 775–782 (2018)

    CAS  Google Scholar 

  11. M.A. AbuDalo, I.R. Al-Mheidat, A.W. Al-Shurafat, C. Grinham, V. Oyanedel-Craver, Synthesis of silver nanoparticles using a modified Tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity. PeerJ 7, e6413 (2019)

    Google Scholar 

  12. B. Adebayo-Tayo, A. Salaam, A. Ajibade, Green synthesis of silver nanoparticle using Oscillatoria sp. extract, its antibacterial, antibiofilm potential and cytotoxicity activity. Heliyon 5(10), e02502 (2019)

    Google Scholar 

  13. D. Preetha, R. Arun, P. Kumari, C. Aarti, Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 cell line. J. Nanotechnol. (2013). https://doi.org/10.1155/2013/598328

    Article  Google Scholar 

  14. R. Bhargava, S. Khan, Effect of reduced graphene oxide (rGO) on structural, optical, and dielectric properties of Mg(OH)2/rGO nanocomposites. Adv. Powder Technol. 28(11), 2812–2819 (2017)

    CAS  Google Scholar 

  15. S.V. Banne, M.S. Patil, R.M. Kulkarni, S.J. Patil, Synthesis and characterization of silver nano particles for EDM applications. Mater. Today Proc. 4(11), 12054–12060 (2017)

    Google Scholar 

  16. N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.W. Liu, C.H. Voon, Synthesis of graphene oxide using modified hummers method: solvent influence. Proced. Eng. 184, 469–477 (2017)

    CAS  Google Scholar 

  17. P. Subramanyam, T. Khan, G. Neeraja Sinha, D. Suryakala, C. Subrahmanyam, Plasmonic Bi nanoparticle decorated BiVO4/rGO as an efficient photoanode for photoelectrochemical water splitting. Int. J. Hydrog. Energy 45(13), 7779–7787 (2020)

    CAS  Google Scholar 

  18. B.A. Aragaw, Reduced graphene oxide-intercalated graphene oxide nano-hybrid for enhanced photoelectrochemical water reduction. J. Nanostruct. Chem. 10(1), 9–18 (2020)

    CAS  Google Scholar 

  19. G. Jayalakshmi, K. Saravanan, J. Pradhan, P. Magudapathy, B.K. Panigrahi, Facile synthesis and enhanced luminescence behavior of ZnO: reduced graphene oxide(rGO) hybrid nanostructures. J. Lumin. 203, 1–6 (2018)

    CAS  Google Scholar 

  20. K. Sa et al., Effect of reduced graphene oxide-carbon nanotubes hybrid nanofillers in mechanical properties of polymer nanocomposites. IOP Conf. Ser. Mater. Sci. Eng. 338(1), 012055 (2018)

    Google Scholar 

  21. B. Vellaichamy, P. Periakaruppan, A facile, one-pot and eco-friendly synthesis of gold/silver nanobimetallics smartened rGO for enhanced catalytic reduction of hexavalent chromium. RSC Adv. 6(62), 57380–57388 (2016)

    CAS  Google Scholar 

  22. C. Zhao, S.L. Chou, Y. Wang, C. Zhou, H.K. Liu, S.X. Dou, A facile route to synthesize transition metal oxide/reduced graphene oxide composites and their lithium storage performance. RSC Adv. 3(37), 16597–16603 (2013)

    CAS  Google Scholar 

  23. P. Zheng, T. Liu, Y. Su, L. Zhang, S. Guo, TiO2 nanotubes wrapped with reduced graphene oxide as a high-performance anode material for lithium-ion batteries. Sci. Rep. 6(1), 1–8 (2016)

    Google Scholar 

  24. Z. Wang et al., Humidity-sensing properties of urchinlike CuO nanostructures modified by reduced graphene oxide. ACS Appl. Mater. Interfaces 6(6), 3888–3895 (2014)

    CAS  Google Scholar 

  25. K. Shameli et al., Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int. J. Nanomed. 7, 5603 (2012)

    CAS  Google Scholar 

  26. M. Vanaja, G. Annadurai, Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci. 3(3), 217–223 (2013)

    CAS  Google Scholar 

  27. K. Tahir et al., Visible light photo catalytic inactivation of bacteria and photo degradation of methylene blue with Ag/TiO2 nanocomposite prepared by a novel method. J. Photochem. Photobiol. B 162, 189–198 (2016)

    CAS  Google Scholar 

  28. M. Diantoro et al., Modification of electrical properties of silver nanoparticle (IntechOpen, London, 2018), pp. 233–248

    Google Scholar 

  29. M. Gomathi, P.V. Rajkumar, A. Prakasam, K. Ravichandran, Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of their antibacterial activity. Resour. Technol. 3(3), 280–284 (2017)

    Google Scholar 

  30. H.M.M. Ibrahim, Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 8(3), 265–275 (2015)

    Google Scholar 

  31. A. Raj, R. Lawerence, K. Lawerence, N. Silas, M. Jaless, R. Srivastava, Green synthesis and charcterization of Silver nanoparticles from leafs extracts of Rosa indica and its antibacterial activity against Human Pathogen Bacteria. Orient. J. Chem. 34(1), 326 (2018)

    CAS  Google Scholar 

  32. M. Shahjahan et al., Synthesis and characterization of silver nanoparticles by sol-gel technique. Nanosci. Nanometrol. 3(1), 34–39 (2017)

    Google Scholar 

  33. G. Sharma, J.S. Nam, A.R. Sharma, S.S. Lee, Antimicrobial potential of silver nanoparticles synthesized using medicinal herb coptidis rhizome. Molecules 23(9), 2268 (2018)

    Google Scholar 

  34. S. Bykkam, M. Ahmadipour, S. Narisngam, V.R. Kalagadda, S.C. Chidurala, Extensive studies on X-ray diffraction of green synthesized silver nanoparticles. Adv. Nanopart. 4(1), 1–10 (2015)

    Google Scholar 

  35. Y. Zheng, A. Wang, Z. Wang, L. Fu, F. Peng, Facial synthesis of carrageenan/reduced graphene oxide/Ag composite as efficient SERS platform. Mater. Res. 20, 15–20 (2016)

    Google Scholar 

  36. Y. Zhang, J. Liu, Y. Zhang, J. Liu, Y. Duan, Facile synthesis of hierarchical nanocomposites of aligned polyaniline nanorods on reduced graphene oxide nanosheets for microwave absorbing materials. RSC Adv. 7(85), 54031–54038 (2017)

    CAS  Google Scholar 

  37. H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6(1), 1–7 (2016)

    CAS  Google Scholar 

  38. E. Andrijanto, S. Shoelarta, G. Subiyanto, S. Rifki, Facile synthesis of graphene from graphite using ascorbic acid as reducing agent. AIP Conf. Proc. 1725(1), 020003 (2016)

    Google Scholar 

  39. K.M. Aujara, B.W. Chieng, N.A. Ibrahim, N. Zainuddin, C.T. Ratnam, Gamma-irradiation induced functionalization of graphene oxide with organosilanes. Int. J. Mol. Sci. 20(8), 1910 (2019)

    CAS  Google Scholar 

  40. M. Bera, Chandravati, P. Gupta, P.K. Maji, Facile one-pot synthesis of graphene oxide by sonication assisted mechanochemical approach and its surface chemistry. J. Nanosci. Nanotechnol. 18(2), 902–912 (2018)

    CAS  Google Scholar 

  41. X. Feng, W. Chen, L. Yan, Free-standing dried foam films of graphene oxide for humidity sensing. Sens. Actuators B 215, 316–322 (2015)

    CAS  Google Scholar 

  42. K. Garg, R. Shanmugam, P.C. Ramamurthy, New covalent hybrids of graphene oxide with core modified and -expanded porphyrins: synthesis, characterisation and their non linear optical properties. Carbon N. Y. 122, 307–318 (2017)

    CAS  Google Scholar 

  43. S.W. Lee et al., Sorption/desorption hysteresis of thin-film humidity sensors based on graphene oxide and its derivative. Sens. Actuators B 237, 575–580 (2016)

    CAS  Google Scholar 

  44. B.D. Ossonon, D. Bélanger, Synthesis and characterization of sulfophenyl-functionalized reduced graphene oxide sheets. RSC Adv. 7(44), 27224–27234 (2017)

    CAS  Google Scholar 

  45. A. Rosy, G. Kalpana, Influence of RGO/TIO2 nanocomposite on photo-degrading rhodamine B and rose bengal dye pollutants. Bull. Mater. Sci. (2018). https://doi.org/10.1007/s12034-018-1598-y

    Article  Google Scholar 

  46. M. Strankowski, D. Włodarczyk, Ł Piszczyk, J. Strankowska, Polyurethane nanocomposites containing reduced graphene oxide, FTIR, Raman, and XRD studies. J. Spectrosc. (2016). https://doi.org/10.1155/2016/7520741

    Article  Google Scholar 

  47. T.F. Emiru, D.W. Ayele, Controlled synthesis, characterization and reduction of graphene oxide: a convenient method for large scale production. Egypt. J. Basic Appl. Sci. 4(1), 74–79 (2017)

    Google Scholar 

  48. Y. Chen et al., Microbial reduction of graphene oxide by Azotobacter chroococcum. Chem. Phys. Lett. 677, 143–147 (2017)

    CAS  Google Scholar 

  49. S. Kujur, D.D. Pathak, Reduced graphene oxide-immobilized iron nanoparticles Fe(0)@rGO as heterogeneous catalyst for one-pot synthesis of series of propargylamines. Res. Chem. Intermed. 46(1), 369–384 (2020)

    CAS  Google Scholar 

  50. R. Britto Hurtado, M. Cortez-Valadez, J.R. Aragon-Guajardo, J.J. Cruz-Rivera, F. Martínez-Suárez, M. Flores-Acosta, One-step synthesis of reduced graphene oxide/gold nanoparticles under ambient conditions. Arab. J. Chem. 13(1), 1633–1640 (2020)

    CAS  Google Scholar 

  51. V. Sharma, Y. Jain, M. Kumari, R. Gupta, S.K. Sharma, K. Sachdev, Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application. Macromol. Symp. 376(1), 1700006 (2017)

    Google Scholar 

  52. G. Muruganandi, M. Saravanan, G. Vinitha, M.B. Jessie Raj, T.C. Sabari Girisun, Barium borate nanorod decorated reduced graphene oxide for optical power limiting applications. Opt. Mater. (Amst) 75, 612–618 (2018)

    CAS  Google Scholar 

  53. A.T. Habte, D.W. Ayele, M. Hu, Synthesis and characterization of reduced graphene oxide (rGO) started from graphene oxide (GO) using the tour method with different parameters. Adv. Mater. Sci. Eng. (2019). https://doi.org/10.1155/2019/5058163

    Article  Google Scholar 

  54. I.O. Faniyi et al., The comparative analyses of reduced graphene oxide (RGO) prepared via green, mild and chemical approaches. SN Appl. Sci. 1(10), 1–7 (2019)

    Google Scholar 

  55. R.A. Rochman, S. Wahyuningsih, A.H. Ramelan, Q.A. Hanif, Preparation of nitrogen and sulphur Co-doped reduced graphene oxide (rGO-NS) using N and S heteroatom of thiourea. IOP Conf. Ser. Mater. Sci. Eng. 509(1), 012119 (2019)

    CAS  Google Scholar 

  56. Y. Gong, D. Li, Q. Fu, C. Pan, Influence of graphene microstructures on electrochemical performance for supercapacitors. Prog. Nat. Sci. Mater. Int. 25(5), 379–385 (2015)

    CAS  Google Scholar 

  57. X.H. Vu, T.T.T. Duong, T.T.H. Pham, D.K. Trinh, X.H. Nguyen, V.S. Dang, Synthesis and study of silver nanoparticles for antibacterial activity against Escherichia coli and Staphylococcus aureus. Adv. Nat. Sci. Nanosci. Nanotechnol. 9(2), 025019 (2018)

    Google Scholar 

  58. K. Jyoti, M. Baunthiyal, A. Singh, Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 9(3), 217–227 (2016)

    CAS  Google Scholar 

  59. K. Paulkumar, G. Gnanajobitha, M. Vanaja, M. Pavunraj, G. Annadurai, Green synthesis of silver nanoparticle and silver based chitosan bionanocomposite using stem extract of Saccharum officinarum and assessment of its antibacterial activity. Adv. Nat. Sci. Nanosci. Nanotechnol. 8(3), 035019 (2017)

    Google Scholar 

  60. M.A. Huq, Green synthesis of silver nanoparticles using pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens. Int. J. Mol. Sci. 21(4), 1510 (2020)

    CAS  Google Scholar 

  61. W. Wrótniak-Drzewiecka, S. Gaikwad, D. Laskowski, H. Dahm, J. Niedojadło, A. Gade, M. Rai, Novel approach towards synthesis of silver nanoparticles from Myxococcus virescens and their lethality on pathogenic bacterial cells. J. Biotechnol. Bioeng. 1(1), 7 (2014)

    Google Scholar 

  62. K. Murugan, B. Senthilkumar, D. Senbagam, S. Al-Sohaibani, Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. Int. J. Nanomed. 9, 2431 (2014)

    Google Scholar 

  63. P. Gangwar, S. Singh, N. Khare, Study of optical properties of graphene oxide and its derivatives using spectroscopic ellipsometry. Appl. Phys. A 124(9), 1–8 (2018)

    CAS  Google Scholar 

  64. S. Yavuz, P.R. Bandaru, Ag nanowire coated reduced graphene oxide/n-silicon Schottky junction based solar cell, in 2016 IEEE conference on technologies for sustainability. ed. by R. Ann (IEEE, Piscataway, 2016), pp. 265–269

    Google Scholar 

  65. J. Mohammed et al., Lightweight SrM/CCTO/rGO nanocomposites for optoelectronics and Ku band microwave absorption. J. Mater. Sci. Mater. Electron. 30(4), 4026–4040 (2019)

    CAS  Google Scholar 

  66. A. Senatore, V. D’Agostino, V. Petrone, P. Ciambelli, M. Sarno, Graphene oxide nanosheets as effective friction modifier for oil lubricant: materials, methods, and tribological results. Int. Sch. Res. Not. (2013). https://doi.org/10.5402/2013/425809

    Article  Google Scholar 

  67. A. Kurniasari et al., Defect and magnetic properties of reduced graphene oxide prepared from old coconut shell. IOP Conf. Ser. Mater. Sci. Eng. 196, 012021 (2017)

    Google Scholar 

  68. N.M. Nguyen Huynh, Z.A. Boeva, J.H. Smått, M. Pesonen, T. Lindfors, Reduced graphene oxide as a water, carbon dioxide and oxygen barrier in plasticized poly(vinyl chloride) films. RSC Adv. 8(32), 17645–17655 (2018)

    Google Scholar 

  69. H. Qin, T. Gong, Y. Cho, C. Lee, T. Kim, A conductive copolymer of graphene oxide/poly(1-(3-aminopropyl)pyrrole) and the adsorption of metal ions. Polym. Chem. 5(15), 4466–4473 (2014)

    CAS  Google Scholar 

  70. N.M.S. Hidayah et al., Comparison on graphite, graphene oxide and reduced graphene oxide: synthesis and characterization. AIP Conf. Proc. 1892(1), 150002 (2017)

    Google Scholar 

  71. Z. Wang et al., Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction. Nanoscale Res. Lett. 7(1), 1–7 (2012)

    Google Scholar 

  72. C. Fu, G. Zhao, H. Zhang, S. Li, Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for lithium-ion batteries. Int. J. Electrochem. Sci. 8(5), 6269–6280 (2013)

    CAS  Google Scholar 

  73. Kurniasari et al., Defect and magnetic properties of reduced graphene oxide prepared from old coconut shell. IOP Conf. Ser. Mater. Sci. Eng. (2017). https://doi.org/10.1088/1757-899X/196/1/012021

    Article  Google Scholar 

  74. W.E. Ghann et al., Synthesis and characterization of reduced graphene oxide and their application in dye-sensitized solar cells. ChemEngineering 3(1), 7 (2019)

    CAS  Google Scholar 

  75. G. Naja, P. Bouvrette, S. Hrapovic, J.H.T. Luong, Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. Analyst 132(7), 679–686 (2007)

    CAS  Google Scholar 

  76. A.J. Kora, J. Arunachalam, Green fabrication of silver nanoparticles by gum tragacanth (Astragalus gummifer): a dual functional reductant and stabilizer. J. Nanomater. (2012). https://doi.org/10.1155/2012/869765

    Article  Google Scholar 

  77. Á.D.J. Ruíz-baltazar, S.Y. Reyes-lópez, D. Larrañaga, M. Estévez, Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties. Results Phys. 7, 2639–2643 (2017)

    Google Scholar 

  78. K. Rathi, K. Pal, Impact of doping on GO: fast response-recovery humidity sensor. ACS Omega 2(3), 842–851 (2017)

    CAS  Google Scholar 

  79. C.Y. Ho, C.C. Liang, H.W. Wang, Investigation of low thermal reduction of graphene oxide for dye-sensitized solar cell counter electrode. Colloids Surf. A 481, 222–228 (2015)

    CAS  Google Scholar 

  80. N.H.N. Azman, H.N. Lim, M.S. Mamat, Y. Sulaiman, Synergistic enhancement of ternary poly(3,4-ethylenedioxythiophene)/graphene oxide/manganese oxide composite as a symmetrical electrode for supercapacitors. Energies 11(6), 1510 (2018)

    Google Scholar 

  81. Q.A. Drmosh et al., A novel approach to fabricating a ternary rGO/ZnO/Pt system for high-performance hydrogen sensor at low operating temperatures. Appl. Surf. Sci. 464, 616–626 (2019)

    CAS  Google Scholar 

  82. W.N.A. Wan Khalit, M.N. Mustafa, Y. Sulaiman, Synergistic effect of poly(3,4-ethylenedioxythiophene), reduced graphene oxide and aluminium oxide) as counter electrode in dye-sensitized solar cell. Results Phys. 13, 102355 (2019)

    Google Scholar 

  83. R.P. Antony, L.K. Preethi, B. Gupta, T. Mathews, S. Dash, A.K. Tyagi, Efficient electrocatalytic performance of thermally exfoliated reduced graphene oxide-Pt hybrid. Mater. Res. Bull. 70, 60–67 (2015)

    CAS  Google Scholar 

  84. F.T. Johra, W.G. Jung, Hydrothermally reduced graphene oxide as a supercapacitor. Appl. Surf. Sci. 357, 1911–1914 (2015)

    CAS  Google Scholar 

  85. S.F.A.Z. Yuso, C.S. Lim, S.R. Azzuhri, H. Ahmad, R. Zakaria, Studies of Ag/TiO2 plasmonics structures integrated in side polished optical fiber used as humidity sensor. Results Phys. 10, 308–316 (2018)

    Google Scholar 

  86. O.V. Mikhailov, E.O. Mikhailova, Elemental silver nanoparticles: biosynthesis and bio applications. Materials (Basel) 12(19), 3177 (2019)

    CAS  Google Scholar 

  87. F. Benakashani, A.R. Allafchian, S.A.H. Jalali, Biosynthesis of silver nanoparticles using Capparis spinosa L. leaf extract and their antibacterial activity. Karbala Int. J. Mod. Sci. 2(4), 251–258 (2016)

    Google Scholar 

  88. F. Kharchouche, S. Belkhiat, D.E.C. Belkhiat, Non-linear coefficient of BaTiO3-doped ZnO varistor. IET Sci. Meas. Technol. 7(6), 326–333 (2013)

    CAS  Google Scholar 

  89. C.W. Nahm, Microstructure and varistor properties of ZnO-V2O5-MnO2-based ceramics. J. Mater. Sci. 42(19), 8370–8373 (2007)

    CAS  Google Scholar 

  90. G.Z. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang, P. Qi, Nonlinear electrical behaviour of the WO3-based system. J. Mater. Sci. 39(13), 4373–4374 (2004)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Materials Research Centre (MRC), Malaviya National Institute of Technology (MNIT), Jaipur, India for Raman Spectroscopy, Central Instrumentation Facility (CIF) lab, and Lovely Professional University (LPU), Phagwara, India for providing the Characterisation results for Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X–Ray (EDX), X–Ray Diffraction (XRD), Thermo-Gravimetric Analysis (TGA), and Fourier Transform Infrared Spectroscopy (FTIR).

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Srivastava.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organisation or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panesar, M.J., Tchouank Tekou Carol, T., Mohammed, J. et al. IV-curve and structural studies of the composite mixture of reduced graphene oxide and silver nanopowders. J Mater Sci: Mater Electron 33, 1228–1244 (2022). https://doi.org/10.1007/s10854-021-07416-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07416-x

Navigation