Skip to main content
Log in

Understanding the coexistence of two bipolar resistive switching modes with opposite polarity in CuxO (1 ≤ x ≤ 2)-based two-terminal devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we have fabricated and tested the resistive switching behavior of non-volatile nature in a number of devices with mainly two architectures: (1) W tip/CuxO/Pt/Ti/SiO2/Si and (2) Cu contact pad/CuxO/Pt/Ti/SiO2/Si. The device type (1) showed coexistence of two bipolar resistive switching modes, commonly known as eight-wise (8w) and counter-eight-wise (c8w), in their current–voltage (I-V) characteristics. We report considerably high ON/OFF ratio of 105 and stable retention time 15 × 103 s. The formation and annihilation of metallic Cu nanofilaments were argued as the plausible reason behind the observed resistive switching events. The onset of quantized conductance steps in the typical conductance plots (in units of quanta of conductance 2e2/h, where e and h are electronic charge and Planck’s constant, respectively) – a phenomenon usually observed in narrow conductive channel – was exploited to provide an “indirect” proof for formation of metallic Cu-based filaments or channels during switching. On the contrary, in device type (2), we observed only “regular” bipolar switching. The operating voltage was less than 1 V in both the devices – suggesting its potential low-power applications. We assessed the underlying conduction mechanism in depth and also theoretically estimated the lateral size of the tiny conductive nanofilaments formed during the switching events. Copper being a cost-effective and widely available substance, our results indicate that CuxO-based cells can be a feasible and useful route for non-volatile resistive memories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Dirkmann, J. Kaiser, C. Wenger, T. Mussenbrock, ACS Appl. Mater. Interfaces 10, 17 (2018)

    Article  Google Scholar 

  2. N. S. Sterin, N. Basu, M Cahay, M. N. Satyanarayan, S. S. Mal, and P. P. Das. Phys. Status Solidi A, 2020, 2000306

  3. International Technology Roadmap for Semiconductor, http://www.itrs2.net

  4. H.-S. P. Wong , S. Salahuddin. 2015 Nature Nanotechnology 10(3): 191-194

  5. W. Banerjee, Electronics 9, 1029 (2020)

    Article  CAS  Google Scholar 

  6. T. Eshita, W. Wang, K. Nomura, K Nakamura, H. Saito, H. Yamaguchi, S. Mihara, Y. Hikosaka, Y. Kataoka, M. Kojima. Jpn. J. Appl. Phys, 2018, 57, 11UA01.

  7. Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J., J. Cha. Adv. Mater 30, 1705587 (2018)

    Article  Google Scholar 

  8. C. Li, B. Gao, Y. Yao, X. Guan, X. Shen, Y. Wang, P. Huang, L. Liu, X. Liu, J. Li, C. Gu, J. Kang, RYu. Adv, Mater 29, 1602976 (2017)

    Google Scholar 

  9. Z. Shen, C. Zhao, Y. Qi, W. Xu, Y. Liu, I.Z. Mitrovic, L. Yang, C. Zhao, Nanomaterials 10, 1437 (2020)

    Article  CAS  Google Scholar 

  10. F. Zahoor, T.Z.A. Zulkifli, F.A. Khanday, Nanoscale Res Lett 15, 90 (2020)

    Article  CAS  Google Scholar 

  11. H. Wang, X. Yan. Phys. Status Solidi RRL, 2019, 1900073.

  12. Y. Chen, IEEE Trans. Electron Devices 67(4), 1420 (2020)

    Article  CAS  Google Scholar 

  13. Y. Espinal, S. P. Alpay, M. Howard, B. M. Hanrahan. Journal of Applied Physics, 2018 124, 064103.

  14. J. Lee, W. D. Lu. Adv. Mater, 2017, 1702770.

  15. M. Prezioso1, F. Merrikh-Bayat1, B. D. Hoskins1, G. C. Adam1, K. K. Likharev, D. B. Strukov. Nature, 2015, 521,61.

  16. P.M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, W.D. Lu, Nat. Nanotechnol. 12, 784 (2017)

    Article  CAS  Google Scholar 

  17. M.A. Zidan, J.P. Strachan, W.D. Lu, Nature Electronics 1, 22 (2018)

    Article  Google Scholar 

  18. X. Hou, R. Pan, Q. Yu, K. Zhang, G. Huang, Y. Mei, D. W. Zhang, P. Zhou. Small, 2019, 1803876

  19. F. Cüppers, S. Menzel , C. Bengel , A. Hardtdegen , M. von Witzleben, U. Böttger, R. Waser, S. H. Eifert. APL Materials, 2019, 7, 091105

  20. M.S. Abbasi, M.S. Irshad, N. Arshad, I. Ahmed, M. Idrees, S. Ahmad, Z. Wei, M. Sharaf, M.D.A. Firdausi, ACS Omega 5(30), 19050 (2020)

    Article  CAS  Google Scholar 

  21. J. Shin, M. Kang, S. Kim. Appl. Phys. Lett, 2021, 119, 012102.

  22. H. Zhang, C. Cheng, B. Huang, H. Zhang, R. Chen, Y. Huang, H. Chen, W. Pei, J. Phys. Chem. Lett 12, 3600 (2021)

    Article  CAS  Google Scholar 

  23. T. Kim, H. Son, I. Kim, J. Kim, S. Lee, J.K. Park, J.Y. Kwak, J. Park, Y.J. Jeong, Sci Rep 10, 11247 (2020)

    Article  Google Scholar 

  24. W. Song, W. Wang, H.K. Lee, M. Li, V.Y.Q. Zhuo, Z. Chen, K.J. Chui, J.C. Liu, I.T. Wang, Y. Zhu, N. Singh, Appl. Phys. Lett. 115, e133501 (2019)

    Article  Google Scholar 

  25. S.T. Gurme, T.D. Dongale, S.N. Surwase, S.D. Kumbhar, G.M. More, V.L. Patil, P.S. Patil, R.K. Kamat, J.P. Jadhav, Phys. Status Solidi A 215(24), e1800550 (2018)

    Article  Google Scholar 

  26. S. Ge, Y. Wang, Z. Xiang, Y. Cui, ACS Appl. Mater. Interfaces 10, 29 (2018)

    Google Scholar 

  27. S. Yamamoto, T. Kitanaka, T. Miyashita, M. Mitsuishi. Nanotechnology 2018, 29, 26LT02.

  28. R. Koizumi , A. Aiba, S Kaneko, S. Fujii, T. Nishino, M. Kiguchi. 2019 Nanotechnology 30: e125202

  29. P. Salev, J.D. Valle, Y. Kalcheim, I.K. Schuller, PNAS 116, 8798 (2019)

    Article  CAS  Google Scholar 

  30. Y. Li, X.-Y. Sun, C.-Y. Xu, J. Cao, Z.-Y. Sun, L. Zhen, Nanoscale 10, 23080 (2018)

    Article  CAS  Google Scholar 

  31. F. Hui, M. A. Villena, W. Fang, A. -Y. Lu, J. Kong, Y. Shi, X. Jing, K. Zhu, M. 2018 Lanza, 2D Mater 5: e031011

  32. F. Zhang, H. Zhang, S. Krylyuk, C.A. Milligan, Y. Zhu, D.Y. Zemlyanov, L.A. Bendersky, B.P. Burton, A.V. Davydov, J. Appenzeller, Nat. Mater. 18, 55 (2019)

    Article  CAS  Google Scholar 

  33. S. Seo, J. Lim, S. Lee, B. Alimkhanuly, A. Kadyrov, D. Jeon, S. Lee, ACS Appl. Mater. Interfaces 11, 43466–43472 (2019)

    Article  CAS  Google Scholar 

  34. A. Moudgil, N. Kalyani, G. Sinsinbar, S. Das, P. Mishra, ACS Appl. Mater. Interfaces 10, 4866 (2018)

    Article  CAS  Google Scholar 

  35. S. P. Park , Y. J. Tak , H. J. Kim , J. H. Lee , H. Yoo , H. J. Kim. 2018 Adv. Mater 30(26): e1800722

  36. X. He, J. Zhang, W. Wang, W. Xuan, X. Wang, Q. Zhang, C.G. Smith, J. Luo, ACS Appl. Mater. Interfaces 8, 17 (2016)

    Google Scholar 

  37. G. Shuang, G. Liu, Q. Chen, W. Xue, H. Yang, J. Shang, B. Chen, F. Zeng, C. Song, F. Pan, R.-W. Li, A.C.S. Appl, Mater. Interfaces 10, 6453 (2018)

    Article  Google Scholar 

  38. A. Wang, J. Zhang, G. Zha, X. Lingyan, J. Wanqi, J Mater Sci: Mater Electron 32, 10809–10819 (2021)

    CAS  Google Scholar 

  39. R. Dittmann, J. P. Strachan. 2019 APL Mater. 7: e110903

  40. R. Dong, D.S. Lee, W.F. Xiang, S.J. Oh, D.J. Seong, S.H. Heo, H.J. Choi, M.J. Kwon, S.N. Seo, M.B. Pyun, M. Hasan, Hyunsang Hwang, Appl. Phys. Lett. 90, e042107 (2007)

    Google Scholar 

  41. R. Ebrahim, N. Wu, A. Ignatiev. 2012 J. Appl. Phys. 111: 034509

  42. J. Deuermeier, A. Kiazadeh, A. Klein, R. Martins, E. Fortunato, Nanomaterials 9, 289 (2019)

    Article  CAS  Google Scholar 

  43. P. Yan, Y. Li, Y.J. Hui, S.J. Zhong, Y.X. Zhou, L. Xu, N. Liu, H. Qian, H.J. Sun, X.S. Miao, Appl. Phys. Lett. 107, e083501 (2015)

    Google Scholar 

  44. T. S. Rehman, J. H. Hur, D. K. Kim. 2018 J. Phys. Chem., C 22: e11076

  45. W.Y. Yang, S.W. Rhee, Appl. Phys. Lett. 91, e232907 (2007)

    Article  Google Scholar 

  46. K.D. Liang, C.H. Huang, C.C. Lai, J.S. Huang, H.W. Tsai, Y.C. Wang, Y.C. Shih, M.T. Chang, S.C. Lo, Y.L. Chueh, ACS Appl. Mater. Interfaces 6, e16537 (2014)

    Article  Google Scholar 

  47. X. Sun, G. Li, L. Chen, Z. Shi, W. Zhang, Nanoscale Res. Lett. 6, 599 (2011)

    Article  Google Scholar 

  48. H. Zhang, S. Yoo, S. Menzel, C. Funck, F. Cüppers, D.J. Wouters, C.S. Hwang, R. Waser, S.H. Eifert, ACS Appl. Mater. Interfaces. 10, 29766 (2018)

    Article  CAS  Google Scholar 

  49. R. Muenstermann, T. Menke, R. Dittmann, R. Waser, Adv. Mater. 22, 4819 (2010)

    Article  CAS  Google Scholar 

  50. K. Shibuya, R. Dittmann, S. Mi, R. Waser, Adv. Mater. 22, 411 (2010)

    Article  CAS  Google Scholar 

  51. H. Lv, T. Tang, Appl. Phys. A 102, e1015 (2011)

    Article  Google Scholar 

  52. R. Ebrahim, A. Zomorrodian, N. Wua, A. Ignatiev, Thin Solid Films 539, 337 (2013)

    Article  CAS  Google Scholar 

  53. A.I. Stadnichenko, A.M. Sorokin, A.I. Boronin, J. Struct. Chem. 49, 341 (2008)

    Article  CAS  Google Scholar 

  54. Y. Sharma, S. P. Pavunny, E. Fachini, J. F. Scott, R. S. Katiyar. 2015 J. Appl. Phys. 118: e094506

  55. R. Waser, J. Nanosci. Nanotechnol. 12, 10 (2012)

    Article  Google Scholar 

  56. F. C. Chiu. 2014 Advances in Materials Science and Engineering Article ID 578168.

  57. A. Barman, C.P. Saini, P.K. Sarkar, A. Roy, B. Satpati, D. Kanjilal, S.K. Ghosh, S. Dhar, A. Kanjilal, Appl. Phys. Lett. 108, e244104 (2016)

    Article  Google Scholar 

  58. S.C. Chae, J.S. Lee, S. Kim, S.B. Lee, S.H. Chang, C. Liu, B. Kahng, H. Shin, D.-W. Kim, C.U. Jung, S. Seo, M.-J. Lee, T.W. Noh, Adv. Mater. 20, 1154 (2008)

    Article  CAS  Google Scholar 

  59. J.Y. Son, Y.-H. Shin, Appl. Phys. Lett. 92, e222106 (2008)

    Article  Google Scholar 

  60. P.P. Das, M. Cahay, S. Kalita, S.S. Mal, A.K. Jha, Sci. Rep. 9, 12172 (2019)

    Article  Google Scholar 

  61. P. P. Das, A. Jones, M. Cahay, S. Kalita, S. S. Mal, N. S. Sterin, T. R. Yadunath, M. Advaitha, S. T. Herbert. 2017 J. Appl. Phys. 121: e083901

  62. K. Terabe, T. Hasegawa, T. Makayama, M. Aono, Nature 433, 47 (2005)

    Article  CAS  Google Scholar 

  63. J.J.T. Wagenaar, M.M. Masis, J.M.V. Ruitenbeek, Appl. Phys. 111, e014302 (2012J)

    Article  Google Scholar 

  64. D. Liu, H. Cheng, X. Zhu, G. Wang, N. Wang, ACS Appl Mater Interfaces 5, 11258 (2013)

    Article  CAS  Google Scholar 

  65. X. Zhu, W. Su, Y. Liu, B. Hu, L. Pan, W. Lu, J. Zhang, R.W. Li, Adv. Mater 24, 3941 (2012)

    Article  CAS  Google Scholar 

  66. Y. Wang, X. Qian, K. Chen, Z. Fang, W. Li, Appl. Phys. Lett. 102, e042103 (2013)

    Google Scholar 

  67. S. Gao, F. Zeng, C. Chen, G. Tang, Y. Lin, Z. Zheng, C. Song, F. Pan. 2013 Nanotechnology 24: e335201

  68. A. Mehonic, A. Vrajitoarea, S. Cueff, S. Hudziak, H. Howe, C. Labbe, R. Rizk, M. Pepper, A.J. Kenyon, Sci Rep 3, 2708 (2013)

    Article  CAS  Google Scholar 

  69. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  70. F. Ma, K. Xu, Appl. Surf. Sci. 254, 4415 (2008)

    Article  CAS  Google Scholar 

  71. K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, Appl. Phys. Lett. 93, e202107 (2008)

    Article  Google Scholar 

  72. A. Bid, A. Bora, A. K. Raychaudhuri. 2012 Physical Review B 74: e035426

  73. Y.I. Lee, Y.S. Goo, C.H. Chang, K.J. Lee, N.V. Myung, Y.H. Choa, J. Nanosci. Nanotechnol. 11, 1455 (2011)

    Article  CAS  Google Scholar 

  74. Y. Yang, P. Sheridan, W. Lu, Appl. Phys. Lett. 100, e203112 (2012)

    Article  Google Scholar 

  75. C. Chen, S. Gao, G. Tang, H. Fu, G. Wang, C. Song, F. Zeng, F. Pan, ACS Appl. Mater. Interfaces 5, 1793–1799 (2013)

    Article  CAS  Google Scholar 

  76. Y.C. Bae, A.R. Lee, J.B. Lee, J.H. Koo, K.C. Kwon, J.G. Park, H.S. Im, J.P. Hong, Adv. Funct. Mater. 22, 709–716 (2012)

    Article  CAS  Google Scholar 

  77. J. F. Scott. 2014 J. Phys.: Condens. Matter 26: e142202

Download references

Acknowledgements

This work is supported by Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (EMR/2016/000808) and VGST Award from Government of Karnataka (GRD No. 827) under Scheme-RGS/F. NSS and TN acknowledge financial support from the National Institute of Technology Karnataka, India. All authors thank CeNSE, Indian Institute of Science Bangalore for helping with material characterization. We are grateful to Prof. Marc Cahay (University of Cincinnati USA) for fruitful discussion and useful comment on our manuscript.

Funding

Science and Engineering Research Board,EMR/2016/000808,Partha Pratim Das,VGST,RGF GRD 827,Partha Pratim Das

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sib Sankar Mal or Partha Pratim Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterin, N.S., Nivedya, T., Mal, S.S. et al. Understanding the coexistence of two bipolar resistive switching modes with opposite polarity in CuxO (1 ≤ x ≤ 2)-based two-terminal devices. J Mater Sci: Mater Electron 33, 2101–2115 (2022). https://doi.org/10.1007/s10854-021-07415-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07415-y

Navigation