Skip to main content
Log in

Fabrication of high-performance ZnO-based thin-film transistors by Mg/H co-doping at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We fabricated thin-film transistors (Mg0.06Zn0.94O:H-TFTs) in an argon and hydrogen (Ar + H2) atmosphere by magnetron sputtering using Mg0.06Zn0.94O as the target material without heating the P++–Si/SiO2 substrate. We studied the influence of Mg/H co-doping on film properties and device performance. Mg doping of the ZnO film increases the formation energy of oxygen vacancies and reduces that of interstitial hydrogen, whereas H doping acts as a shallow donor and passivates oxygen-related defects. On the one hand, the combined effect of the dopants modulated the carrier concentration of the film. On the other hand, the scattering of electrons by the interface trap states in the channel layer reduced, thereby improving the TFT performance. At H2/(Ar + H2) = 0.39%, the overall performance of Mg0.06Zn0.94O:H-TFT is the best, with a saturation mobility of 8.11 cm2/Vs, an on/off-current ratio of 6.17 × 106, a threshold voltage of 2.78 V and a subthreshold swing of 0.42 V/Dec, and the positive and negative bias stress stability values are 0.61 and − 1.02 V, respectively. Besides, all features are significantly improved compared with those of ZnO-TFT. The simple fabrication of high-performance Mg0.06Zn0.94O:H-TFTs under substrate at room temperature can promote ZnO-based TFT application in flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Lim, S.H. Kim, Y.L. Wang, J.W. Lee, I.I. Kravchenko, J. Electrochem. Soc. 155, H383 (2018)

    Article  CAS  Google Scholar 

  2. J.K. Jeong, J.H. Jeong, J.H. Choi, J.S. Im, S.H. Kim, H.W. Yang, K.N. Kang, K.S. Kim, T.K. Ahn, H.J. Chung, M. Kim, B.S. Gu, J.S. Park, Y.G. Mo, H.D. Kim, H.K. Chung, S.I.D. Symp, Dig. Tech. Pap. 39, 1–4 (2008)

    Article  CAS  Google Scholar 

  3. R.L. Hoffman, B.J. Norris, J.F. Wager, Appl. Phys. Lett. 82, 733–735 (2003)

    Article  CAS  Google Scholar 

  4. X. Liang, C. Wang, J. Liang, C. Liu, Y. Pei, Semicond. Sci. Technol. 32, 095010 (2017)

    Article  CAS  Google Scholar 

  5. W.J. Park, H.S. Shin, B.D. Ann, G.H. Kim, S.M. Lee, K.H. Kim, H.J. Kim, Appl. Phys. Lett. 93, 083508 (2008)

    Article  CAS  Google Scholar 

  6. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488–492 (2004)

    Article  CAS  Google Scholar 

  7. M.G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Nat. Mater. 10, 382–388 (2011)

    Article  CAS  Google Scholar 

  8. D. Han, L. Huang, Y. Wen, Y. Cong, W. Yi, IEEE Trans. Electron. Devices 64, 1997–2000 (2017)

    Article  CAS  Google Scholar 

  9. K. Song, J. Noh, T. Jun, Y.H. Jung, H.Y. Kang, Adv. Mater. 22, 4308–4312 (2010)

    Article  CAS  Google Scholar 

  10. H. Li, D. Han, J. Dong, W. Yu, Y. Liang, Z. Luo, S. Zhang, X. Zhang, Y. Wang, Appl. Surf. Sci. 439, 632–637 (2018)

    Article  CAS  Google Scholar 

  11. S.H. Yu, B.J. Kim, M.S. Kang, S.H. Kim, J.H. Han, J.Y. Lee, J.H. Cho, ACS Appl. Mater. Interfaces 5, 9765–9769 (2013)

    Article  CAS  Google Scholar 

  12. M.D. Mccluskey, S.J. Jokela, J. Appl. Phys. 106, 13 (2009)

    Article  CAS  Google Scholar 

  13. E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 24, 2945–2986 (2012)

    Article  CAS  Google Scholar 

  14. J.J. Dong, X.W. Zhang, J.B. You, P.F. Cai, Z.G. Yin, Q. An, X.B. Ma, P. Jin, Z.G. Wang, P.K. Chu, ACS Appl. Mater. Interfaces 2, 1780–1784 (2010)

    Article  CAS  Google Scholar 

  15. L.Y. Chen, W.H. Chen, J.J. Wang, F.C.N. Hong, Y.K. Su, Appl. Phys. Lett. 85, 5628–5630 (2004)

    Article  CAS  Google Scholar 

  16. A. Abliz, C.W. Huang, J. Wang, L. Xu, L. Liao, X. Xiao, W.W. Wu, Z. Fan, C. Jiang, J. Li, ACS Appl. Mater. Interfaces 8, 7862–7868 (2016)

    Article  CAS  Google Scholar 

  17. L. Xu, Q. Chen, L. Liao, X.Q. Liu, T.C. Chang, K.C. Chang, T.M. Tsai, C.Z. Jiang, J.L. Wang, J.C. Li, ACS Appl. Mater. Interfaces 8, 5408–5415 (2016)

    Article  CAS  Google Scholar 

  18. C.Y. Kim, J.H. Park, T.G. Kim, J. Alloys Compd. 732, 300–305 (2018)

    Article  CAS  Google Scholar 

  19. J. Kim, T.D. Le, A. Park, J. Park, H. Seo, J. Alloys Compd. 799, 398–405 (2019)

    Article  CAS  Google Scholar 

  20. D.L. Zhu, Z.J. Jiang, W.H. Zhang, D.B. Yin, Y.M. Lu, Mater. Chem. Phys. 261, 124248 (2021)

    Article  CAS  Google Scholar 

  21. B.L. Zhu, J. Wang, S.J. Zhu, J. Wu, R. Wu, D.W. Zeng, C.S. Xie, Thin Solid Films 519, 3809–3815 (2011)

    Article  CAS  Google Scholar 

  22. D. Gaspar, L. Pereira, K. Gehrke, B. Galler, E. Fortunato, R. Martins, Sol. Energy Mater. Sol. Cells 163, 255–262 (2017)

    Article  CAS  Google Scholar 

  23. V.D. Walle, G. Chris, Phys. Rev. Lett. 85, 1012–1015 (2000)

    Article  Google Scholar 

  24. H. Abe, M. Yoneda, N. Fujiwara, Jpn. J. Appl. Phys. 47, 1435–1455 (2008)

    Article  CAS  Google Scholar 

  25. J. Zheng, R. Yang, L. Xie, J.L. Qu, Y. Liu, X.G. Li, Adv. Mater. 22, 1451–1473 (2010)

    Article  CAS  Google Scholar 

  26. J. Raja, K. Jang, H.H. Nguyen, T.T. Trinh, W. Choi, J. Yi, Curr. Appl. Phys. 13, 246–251 (2013)

    Article  Google Scholar 

  27. B.D. Ahn, H.O. Sang, C.H. Lee, G.H. Kim, H.J. Kim, Y.L. Sang, J. Cryst. Growth 309, 128–133 (2007)

    Article  CAS  Google Scholar 

  28. C.Y. Koo, K. Song, Y. Jung, W. Yang, S.H. Kim, S. Jeong, J. Moon, ACS Appl. Mater. Interfaces 4, 1456–1461 (2012)

    Article  CAS  Google Scholar 

  29. C.H. Ahn, M.G. Yun, S.Y. Lee, H.K. Cho, IEEE Trans. Electron Devices 61, 73–78 (2013)

    Article  CAS  Google Scholar 

  30. D.L. Zhu, H.F. Xiang, P.J. Cao, F. Jia, W.J. Liu, S. Han, X.C. Ma, Y.M. Lu, J. Mater. Sci.: Mater. Electron. 24, 1966–1969 (2012)

    Google Scholar 

  31. B.Y. Oh, M.C. Jeong, J.M. Myoung, Appl. Surf. Sci. 253, 7157–7161 (2007)

    Article  CAS  Google Scholar 

  32. C.H. Ahn, Y.Y. Kim, C.K. Dong, S.K. Mohanta, H.K. Cho, J. Appl. Phys. 105, 013502 (2009)

    Article  CAS  Google Scholar 

  33. A.B. Djurisic, Y.H. Leung, K.H. Tam, L. Ding, W.K. Ge, H.Y. Chen, S. Gwo, Appl. Phys. Lett. 88, 103107 (2006)

    Article  CAS  Google Scholar 

  34. S.A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84, 2287 (1998)

    Article  CAS  Google Scholar 

  35. S. Lee, S. Jeon, A. Nathan, J. Disp. Technol. 9, 883–889 (2013)

    Article  CAS  Google Scholar 

  36. L.C. Liu, J.S. Chen, J.S. Jeng, Appl. Phys. Lett. 105, 023509 (2014)

    Article  CAS  Google Scholar 

  37. J.H. Ren, K.W. Li, J. Shen, C.M. Sheng, Y.T. Huang, Q. Zhang, J. Alloys Compd. 791, 11–18 (2019)

    Article  CAS  Google Scholar 

  38. J.S. Seo, B.S. Bae, ACS Appl. Mater. Interfaces 6, 15335–15343 (2014)

    Article  CAS  Google Scholar 

  39. Y.H. Hwang, B.S. Bae, J. Disp. Technol. 9, 704–709 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 12074263, 61704111, 11774241, 51872187 and 21805194) and the Science and Technology Foundation of Shenzhen (Grant Nos. JCYJ20180508163404043 and JCYJ20170818143417082).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deliang Zhu or Wangying Xu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Yin, D., Zhu, D. et al. Fabrication of high-performance ZnO-based thin-film transistors by Mg/H co-doping at room temperature. J Mater Sci: Mater Electron 33, 2080–2089 (2022). https://doi.org/10.1007/s10854-021-07412-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07412-1

Navigation