Skip to main content
Log in

Adsorption and trace detection of copper ion by three-dimensional porous graphene composite gel

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, a polydopamine-graphene composite gel (PDA-GA) was prepared from graphene oxide by a facile in-situ reduction assembly method using ascorbic acid combined with dopamine (DA). The morphology and microstructure of PDA-GA were characterized by SEM, XRD, FTIR, BET-BJH, and MIP, and the adsorption behavior of PDA-GA for Cu2+ was studied. Furthermore, the response ability of graphene composite gel-modified glassy carbon electrode (PDA-GH-GCE) to trace Cu2+ was investigated by linear sweep anodic stripping voltammetry. Results showed that when the mass ratio of graphene oxide to DA was 1:3, the adsorption effect of PDA-GA for Cu2+ was the best, and the adsorption capacity reached 316 mg/g. PDA-GA-GCE was sensitive to trace Cu2+, and the detection limit could reach 1.6 × 10−7 mol/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. A. Begum, N. Amin, S. Kaneco et al., Selected elemental composition of the muscle tissue of three species of fish, Tilapia nilotica, Cirrhinamrigala and Clariusbatrachus, from the fresh water Dhanmondi Lake in Bangladesh. Food Chem. 93(3), 439–443 (2005)

    Article  CAS  Google Scholar 

  2. A. Cravo, M.J. Bebianno, Bioaccumulation of metals in the soft tissue of Patella aspera: application of metal/shell weight indices. Estuar. Coast. Shelf Sci. 65(3), 571–586 (2005)

    Article  CAS  Google Scholar 

  3. H.Y. Song, J.Q. Liu, P. Yin et al., Distribution, enrichment and source of heavy metals in Rizhao offshore area, southeast Shandong Province. Mar. Pollut. Bull. 119(2), 175–180 (2017)

    Article  CAS  Google Scholar 

  4. L. Li, S. Wang, X. Shen et al., Ecological risk assessment of heavy metal pollution in the water of China’s coastal shellfish culture areas. Environ. Sci. Pollut. Res. 27(15), 18392–18402 (2020)

    Article  CAS  Google Scholar 

  5. M.M. Zhang, P. He, G. Qiao et al., Heavy metal contamination assessment of surface sediments of the Subei Shoal, China: spatial distribution, source apportionment and ecological risk. Chemosphere 223, 211–222 (2019)

    Article  CAS  Google Scholar 

  6. J. Tan, L. Zhu, B. Wang, Effects of quercetin on DNA damage induced by copper ion. Int. J. Pharmacol. 3(1), 19–26 (2007)

    CAS  Google Scholar 

  7. X.X. Yang, W. Zhang, X.F. Cao et al., Long-term effect of copper with sublethal dose on cytochrome P450 and antioxidant enzyme activities of earthworms. Acta Sci. Circum. 32(3), 745–750 (2012)

    CAS  Google Scholar 

  8. P. Ramya, P. Tamilarasi, M. Sukumaran et al., Toxic effect of copper sulphate on biochemical alterations in a estuarine mud crab. Scylla Serrata. 7(5), 15901–15904 (2015)

    Google Scholar 

  9. S. Mukherjee, S. Bhattacharyya, K. Ghosh et al., Sensory development for heavy metal detection: a review on translation from conventional analysis to field-portable sensor. Trends Food Sci. Technol. 109, 674–689 (2021)

    Article  CAS  Google Scholar 

  10. S. Huang, S. Lu, C. Huang et al., Sensitive and selective stripping voltammetric determination of copper (II) using a glassy carbon electrode modified with amino-reduced graphene oxide and β-cyclodextrin. Mikrochim. Acta 182(15), 2529–2539 (2015)

    Article  CAS  Google Scholar 

  11. Q. Wu, H.M. Bi, X.J. Han, Research progress of electrochemical detection of heavy metal ions. Chin. J. Anal. Chem. 49(3), 330–340 (2021)

    Article  CAS  Google Scholar 

  12. X.X. Wang, Y.X. Qi, Y. Shen et al., A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal-organic framework. Sens. Actuators B 310, 127756 (2020)

    Article  CAS  Google Scholar 

  13. C.M. Quiroa-Montalván, L.E. Gómez-Pineda, L. Álvarez-Contreras et al., Ordered mesoporous carbon decorated with magnetite for the detection of heavy metals by square wave anodic stripping voltammetry. J. Electrochem. Soc. 164(6), B304–B313 (2017)

    Article  CAS  Google Scholar 

  14. M. Yun, J.E. Choe, J.M. You et al., High catalytic activity of electrochemically reduced graphene composite toward electrochemical sensing of Orange II. Food Chem. 169, 114–119 (2015)

    Article  CAS  Google Scholar 

  15. C. Fei, X. Zhang, Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites. J. Electroanal. Chem. 669, 35–41 (2012)

    Article  CAS  Google Scholar 

  16. H. Ahmad, C. Liu, Ultra-thin graphene oxide membrane deposited on highly porous anodized aluminum oxide surface for heavy metal ions preconcentration. J. Hazard. Mater. 415, 125661 (2021)

    Article  CAS  Google Scholar 

  17. S. Lee, J. Oh, D. Kim et al., A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions. Talanta 160, 528–536 (2016)

    Article  CAS  Google Scholar 

  18. A. Li, C.J. Pei, Z.Q. Zhu et al., Progress in graphene aerogels. Mod. Chem. Ind. 33(10), 20–23 (2013)

    Google Scholar 

  19. M. Hasanpour, M. Hatami, Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: a review study. Adv. Colloid Interface Sci. 284, 102247 (2020)

    Article  CAS  Google Scholar 

  20. V. Suvina, S.M. Krishna, D.H. Nagaraju et al., Polypyrrole-reduced graphene oxide nanocomposite hydrogels: a promising electrode material for the simultaneous detection of multiple heavy metal ions. Mater. Lett. 232, 209–212 (2018)

    Article  CAS  Google Scholar 

  21. L. Yihong, Z. Tingyao, H. Rong et al., Synthesis of dopamine-modified graphene aerogels and its adsorption capability for dyes. Ind. Water Treat. 38(10), 67–70 (2018)

    Google Scholar 

  22. T. Li, X. Liu, L. Li et al., Polydopamine-functionalized graphene oxide compounded with polyvinyl alcohol/chitosan hydrogels on the recyclable adsorption of cu(II), Pb(II) and cd(II) from aqueous solution. J. Polym. Res. 26(12), 281 (2019)

    Article  CAS  Google Scholar 

  23. S.N. Feng, L.Y. Yu, M.X. Yan et al., Holey nitrogen-doped graphene aerogel for simultaneously electrochemical determination of ascorbic acid, dopamine and uric acid. Talanta 224, 121851 (2021)

    Article  CAS  Google Scholar 

  24. X. Yu, P.W. Wu, Y.C. Liu et al., Dopamine and L-arginine tailored fabrication of ultralight nitrogen-doped graphene aerogels for oil spill treatment. J. Fuel Chem. Technol. 45(10), 1230–1235 (2017)

    Article  CAS  Google Scholar 

  25. K.L. Zhang, Q.C. Du, C. Yan, Preparation and adsorption property of dopamine reduced graphene oxide aerogel. Mater. Rep. 31(30), 219-221–232 (2017)

    Google Scholar 

  26. M.Z.H. Khan, M. Daizy, C. Tarafder et al., Au-PDA@SiO2 core-shell nanospheres decorated rGO modified electrode for electrochemical sensing of cefotaxime. Sci Rep 9, 19041 (2019)

    Article  CAS  Google Scholar 

  27. C. Hou, Q. Zhang, Y. Li et al., P25–graphene hydrogels: room-temperature synthesis and application for removal of methylene blue from aqueous solution. J. Hazard. Mater. 205–206, 229–235 (2012)

    Article  CAS  Google Scholar 

  28. X. Mi, G. Huang, W. Xie et al., Preparation of graphene oxide aerogel and its adsorption for Cu2+ ion. Carbon 50(13), 4856–4864 (2012)

    Article  CAS  Google Scholar 

  29. J. Zou, F.H. Wang, Y.L. Yang et al., Preparation and adsorptive property of cyclodextrin/graphene oxide composite for Cu2+. China Plast. 33(4), 17–21 (2019)

    Google Scholar 

  30. B.W. Yu, J. Xu, J.H. Liu et al., Adsorption behavior of copper ions on graphene oxide–chitosan aerogel. J. Environ. Chem. Eng. 1(4), 1044–1050 (2013)

    Article  CAS  Google Scholar 

  31. L. Pan, Z. Wang, Y. Qi et al., Efficient removal of lead, copper and cadmium ions from water by a porous calcium alginate/graphene oxide composite aerogel. Nanomaterials 8(11), 957 (2018)

    Article  CAS  Google Scholar 

  32. J. Xie, J. Li, L. Zhao et al., Fabrication of TiO2-graphene oxide aerogel for the adsorption of copper ions. Nanosci. Nanotechnol. Lett. 6(11), 1018–1023 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

The work was supported by National Natural Science Foundation of China (11475017).

Funding

This study was supported by National Natural Science Foundation of China (11475017).

Author information

Authors and Affiliations

Authors

Contributions

LY performed the experiment, LY contributed significantly to analysis and manuscript preparation, CH, YB, and HG helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to luting Yan.

Ethics declarations

Conflict of interest

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Yan, l., Hao, C. et al. Adsorption and trace detection of copper ion by three-dimensional porous graphene composite gel. J Mater Sci: Mater Electron 33, 1966–1976 (2022). https://doi.org/10.1007/s10854-021-07401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07401-4

Navigation