Skip to main content
Log in

Lattice relaxation effect in RbxMA(1−x)PbBr3 single crystal to enhance optoelectronic performance of perovskite photodetectors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 09 February 2022

This article has been updated

Abstract

Single crystal (SC) MAPbBr3 perovskite is regarded as a promising material to fabricate high-performance photodetectors (PDs) due to its impressive optoelectronic properties and good chemical stability. Rb+ doping has been proved to be an effective method to significantly improve the optoelectronic properties of MAPbBr3 SC. However, the intrinsic effect of Rb+ on the crystal structure is still unclear. Herein, Rb-doping enhances optoelectronic performance of RbxMA(1−x)PbBr3 single crystals by lattice relaxation effect was proved. The density functional theory (DFT) calculations demonstrate that Rb-doping leads to lattice relaxation effect which is benefit to reduce trap density of RbxMA(1−x)PbBr3 SCs. And then a series RbxMA(1−x)PbBr3 SCs were grown. X-ray rocking curves (XRC) of RbxMA(1−x)PbBr3 SCs prove that appropriate Rb-doping concentration could reduce defect density effectively. X-ray photoelectron spectroscopy (XPS) measurements indicate that Rb-doping enhances the atoms interaction in RbxMA(1−x)PbBr3 lattice. Single-crystal PDs were fabricated to compare the optoelectronic properties of MAPbBr3 SCs with different Rb-doping concentration, and the 2% Rb-doped RbxMA(1−x)PbBr3 PD shows the optimum performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Y. Liu, Y. Zhang, K. Zhao, Z. Yang, J. Feng, X. Zhang, K. Wang, L. Meng, H. Ye, M. Liu, S.F. Liu, A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals. Adv. Mater. 30, e1707314 (2018)

    Google Scholar 

  2. X. Zhao, Y. Wang, L. Li, L. Huang, G. Li, W.H. Sun, Methylammonium chloride reduces the bandgap width and trap densities for efficient perovskite photodetectors. J. Mater. Sci. 56(15), 9242–9253 (2021)

    CAS  Google Scholar 

  3. M.K.A. Mohammed, A. Esmail Shalan, M. Dehghanipour et al., Improved mixed-dimensional 3D/2D perovskite layer with formamidinium bromide salt for highly efficient and stable perovskite solar cells. Chem. Eng. J. 428, 131185 (2022). https://doi.org/10.1016/j.cej.2021.131185

    Article  CAS  Google Scholar 

  4. T. Ozturk, E. Akman, A.E. Shalan et al., Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17%. Nano Energy 87, 106157 (2021). https://doi.org/10.1016/j.nanoen.2021.106157

    Article  CAS  Google Scholar 

  5. E. Akman, A.E. Shalan, F. Sadegh et al., Moisture-resistant FAPbI3 perovskite solar cell with 22.25 % power conversion efficiency through pentafluorobenzyl phosphonic acid passivation. Chemsuschem 14(4), 1176–1183 (2021)

    CAS  Google Scholar 

  6. A.E. Shalan, E. Akman, F. Sadegh et al., Efficient and stable perovskite solar cells enabled by dicarboxylic acid-supported perovskite crystallization. J. Phys. Chem. Lett. 12(3), 997–1004 (2021)

    CAS  Google Scholar 

  7. A. Kumar, S. Singh, M.K.A. Mohammed et al., Effect of 2D perovskite layer and multivalent defect on the performance of 3D/2D bilayered perovskite solar cells through computational simulation studies. Sol. Energy 223, 193–201 (2021)

    CAS  Google Scholar 

  8. Z. Li, J. Dong, C. Liu, J. Guo, L. Shen, W. Guo, Surface passivation of perovskite solar cells toward improved efficiency and stability. Nano-Micro Lett. (2019). https://doi.org/10.1007/s40820-019-0282-0

    Article  Google Scholar 

  9. Z. Li, J. Guo, Z. Li, W. Han, G. Ren, C. Liu, L. Shen, W. Guo, Incorporating self-assembled silane-crosslinked carbon dots into perovskite solar cells to improve efficiency and stability. J. Mater. Chem. A 8(11), 5629–5637 (2020)

    CAS  Google Scholar 

  10. J. Zhang, Z. Jin, L. Liang, H. Wang, D. Bai, H. Bian, K. Wang, Q. Wang, N. Yuan, J. Ding, S.F. Liu, Iodine-optimized interface for inorganic CsPbI2Br perovskite solar cell to attain high stabilized efficiency exceeding 14. Adv. Sci. (Weinh) 5(12), 1801123 (2018)

    Google Scholar 

  11. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, O.M. Bakr, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015)

    CAS  Google Scholar 

  12. J. Ding, H. Fang, Z. Lian, J. Li, Q. Lv, L. Wang, J.-L. Sun, Q. Yan, A self-powered photodetector based on a CH3NH3PbI3 single crystal with asymmetric electrodes. CrystEngComm 18(23), 4405–4411 (2016)

    CAS  Google Scholar 

  13. W. Peng, C. Aranda, O.M. Bakr, G. Garcia-Belmonte, J. Bisquert, A. Guerrero, Quantification of ionic diffusion in lead halide perovskite single crystals. ACS Energy Lett. 3(7), 1477–1481 (2018)

    CAS  Google Scholar 

  14. Y. Liu, Y. Zhang, Z. Yang, D. Yang, X. Ren, L. Pang, S.F. Liu, Thinness- and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices. Adv. Mater. 28(41), 9204–9209 (2016)

    CAS  Google Scholar 

  15. P. Andričević, X. Mettan, M. Kollár, B. Náfrádi, A. Sienkiewicz, T. Garma, L. Rossi, L. Forró, E. Horváth, Light-emitting electrochemical cells of single crystal hybrid halide perovskite with vertically aligned carbon nanotubes contacts. ACS Photon. 6(4), 967–975 (2019)

    Google Scholar 

  16. D.N. Dirin, I. Cherniukh, S. Yakunin, Y. Shynkarenko, M.V. Kovalenko, Solution-grown CsPbBr3 perovskite single crystals for photon detection. Chem. Mater. 28(23), 8470–8474 (2016)

    CAS  Google Scholar 

  17. C. Hettiarachchi, A. Xie, T.H. Nguyen, J. Yu, F. Maddalena, X.Q. Dinh, M.D. Birowosuto, C. Dang, Current oscillations and intermittent emission near an electrode interface in a hybrid organic-inorganic perovskite single crystal. ACS Appl. Mater. Interfaces 11(45), 42838–42845 (2019)

    CAS  Google Scholar 

  18. Y. Liu, Z. Yang, S.F. Liu, Recent progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications. Adv. Sci. (Weinh) 5(1), 1700471 (2018)

    Google Scholar 

  19. J. Huang, Y. Shao, Q. Dong, Organometal trihalide perovskite single crystals: a next wave of materials for 25% efficiency photovoltaics and applications beyond? J. Phys. Chem. Lett. 6(16), 3218–3227 (2015)

    CAS  Google Scholar 

  20. F.O. Saouma, D.Y. Park, S.H. Kim, M.S. Jeong, J.I. Jang, Multiphoton absorption coefficients of organic-inorganic lead halide perovskites CH3NH3PbX3 (X = Cl, Br, I) single crystals. Chem. Mater. 29(16), 6876–6882 (2017)

    CAS  Google Scholar 

  21. M.A. Reyes-Martinez, A.L. Abdelhady, M.I. Saidaminov, D.Y. Chung, O.M. Bakr, M.G. Kanatzidis, W.O. Soboyejo, Y.L. Loo, Time-dependent mechanical response of APbX3 (A = Cs, CH3NH3; X = I, Br) single crystals. Adv. Mater. 29(24), 1606556 (2017)

    Google Scholar 

  22. P.A. Shaikh, D. Shi, J.R.D. Retamal, A.D. Sheikh, M.A. Haque, C.-F. Kang, J.-H. He, O.M. Bakr, T. Wu, Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection. J. Mater. Chem. C 4(35), 8304–8312 (2016)

    CAS  Google Scholar 

  23. S. Amari, J.-M. Verilhac, E. Gros D’Aillon, A. Ibanez, J. Zaccaro, Optimization of the growth conditions for high quality CH3NH3PbBr3 hybrid perovskite single crystals. Cryst. Growth Des. 20(3), 1665–1672 (2020)

    CAS  Google Scholar 

  24. Z. Zuo, J. Ding, Y. Zhao, S. Du, Y. Li, X. Zhan, H. Cui, Enhanced optoelectronic performance on the (110) lattice plane of an MAPbBr3 single crystal. J. Phys. Chem. Lett. 8(3), 684–689 (2017)

    CAS  Google Scholar 

  25. Y. Zhou, J. Chen, O.M. Bakr et al., Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications. Chem. Mater. 30(19), 6589–6613 (2018)

    CAS  Google Scholar 

  26. Y.H. Deng, Z.Q. Yang, R.M. Ma, Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering. Nano Converg. 7(1), 25 (2020)

    CAS  Google Scholar 

  27. Y. Liu, Y. Zhang, Z. Yang et al., Thinness- and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices. Adv. Mater. 28(41), 9204–9209 (2016)

    CAS  Google Scholar 

  28. W. Wei, Y. Zhang, Q. Xu et al., Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photon. 11(5), 315–321 (2017)

    CAS  Google Scholar 

  29. Y. Huang, L. Li, Z. Liu, H. Jiao, Y. He, X. Wang, R. Zhu, D. Wang, J. Sun, Q. Chen, H. Zhou, The intrinsic properties of FA(1–x)MAxPbI3 perovskite single crystals. J. Mater. Chem. A 5(18), 8537–8544 (2017)

    CAS  Google Scholar 

  30. A. Kanwat, E. Moyen, S. Cho, J. Jang, Rubidium as an alternative cation for efficient perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 10(19), 16852–16860 (2018)

    CAS  Google Scholar 

  31. W.T. Hsu, Z.B. Chen, C.C. Wu et al., Optical properties of Mg, Fe, Co-doped near-stoichiometric LiTaO(3) single crystals. Materials (Basel) 5(2), 227–238 (2012)

    CAS  Google Scholar 

  32. J.C. Wu, Z.B. Chen, R.K. Choubey et al., On the study of zinc doping in congruent LiTaO3 crystals. Mater. Chem. Phys. 133(2–3), 813–817 (2012)

    CAS  Google Scholar 

  33. R.K. Choubey, P. Sen, S. Kar et al., Effect of codoping on crystalline perfection of Mg:Cr:LiNbO3 crystals. Solid State Commun. 140(3–4), 120–124 (2006)

    CAS  Google Scholar 

  34. A. Kumar, M. Kumar, V. Bhatt et al., Highly responsive and low-cost ultraviolet sensor based on ZnS/p-Si heterojunction grown by chemical bath deposition. Sens. Actuators A Phys. 331, 112988 (2021). https://doi.org/10.1016/j.sna.2021.112988

    Article  CAS  Google Scholar 

  35. A. Kumar, M. Kumar, V. Bhatt et al., ZnS microspheres-based photoconductor for UV light-sensing applications. Chem. Phys. Lett. 763, 138162 (2021). https://doi.org/10.1016/j.cplett.2020.138162

    Article  CAS  Google Scholar 

  36. J. Wang, S.P. Senanayak, J. Liu, Y. Hu, Y. Shi, Z. Li, C. Zhang, B. Yang, L. Jiang, D. Di, A.V. Ievlev, O.S. Ovchinnikova, T. Ding, H. Deng, L. Tang, Y. Guo, J. Wang, K. Xiao, D. Venkateshvaran, L. Jiang, D. Zhu, H. Sirringhaus, Investigation of electrode electrochemical reactions in CH3NH3PbBr3 perovskite single-crystal field-effect transistors. Adv. Mater. 31(35), e1902618 (2019)

    Google Scholar 

  37. G. Kim, H. Min, K.S. Lee, D.Y. Lee, I.S. Sang, Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020)

    CAS  Google Scholar 

  38. G. Kapil, T. Bessho, C.H. Ng, K. Hamada, M. Pandey, M.A. Kamarudin, D. Hirotani, T. Kinoshita, T. Minemoto, Q. Shen, T. Toyoda, T.N. Murakami, H. Segawa, S. Hayase, Strain relaxation and light management in tin-lead perovskite solar cells to achieve high efficiencies. ACS Energy Lett. 4(8), 1991–1998 (2019)

    CAS  Google Scholar 

  39. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014)

    CAS  Google Scholar 

  40. M.I. Saidaminov, A.L. Abdelhady, B. Murali, E. Alarousu, V.M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, A. Goriely, T. Wu, O.F. Mohammed, O.M. Bakr, High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015)

    Google Scholar 

  41. M. Chen, X. Shan, T. Geske, J. Li, Z. Yu, Manipulating ion migration for highly stable light-emitting diodes with single-crystalline organometal halide perovskite microplatelets. ACS Nano 11, 6312–6318 (2017)

    CAS  Google Scholar 

  42. J. Ding, S. Du, T. Zhou, Y. Yuan, X. Cheng, L. Jing, Q. Yao, J. Zhang, Q. He, H. Cui, X. Zhan, H. Sun, Cesium decreases defect density and enhances optoelectronic properties of mixed MA1–xCsxPbBr3 single crystal. J. Phys. Chem. C 123(24), 14969–14975 (2019)

    CAS  Google Scholar 

  43. D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang, H. Wang, L. Liang, Q. Wang, S.F. Liu, Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Lett. 3(4), 970–978 (2018)

    CAS  Google Scholar 

  44. H.J. An, Y.C. Kim, D.H. Kim, J.M. Myoung, High-performance green light-emitting diodes based on MAPbBr3 with pi-conjugated ligand. ACS Appl. Mater. Interfaces 12(14), 16726–16735 (2020)

    CAS  Google Scholar 

  45. B. Philippe, M. Saliba, J.-P. Correa-Baena, U.B. Cappel, S.-H. Turren-Cruz, M. Grätzel, A. Hagfeldt, H. Rensmo, Chemical distribution of multiple cation (Rb+, Cs+, MA+, and FA+) perovskite materials by photoelectron spectroscopy. Chem. Mater. 29(8), 3589–3596 (2017)

    CAS  Google Scholar 

  46. Y. Shi, J. Xi, T. Lei, F. Yuan, J. Dai, C. Ran, H. Dong, B. Jiao, X. Hou, Z. Wu, Rubidium doping for enhanced performance of highly efficient formamidinium-based perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 10(11), 9849–9857 (2018)

    CAS  Google Scholar 

  47. M. Faghihnasiri, M. Izadifard, M.E. Ghazi, DFT study of mechanical properties and stability of cubic methylammonium lead halide perovskites (CH3NH3PbX3, X = I, Br, Cl). J. Phys. Chem. C 121(48), 27059–27070 (2017)

    CAS  Google Scholar 

  48. G. Maculan, A.D. Sheikh, A.L. Abdelhady, M.I. Saidaminov, M.A. Haque, B. Murali, E. Alarousu, O.F. Mohammed, T. Wu, O.M. Bakr, CH3NH3PbCl3 Single crystals: inverse temperature crystallization and visible-blind UV-photodetector. J. Phys. Chem. Lett. 6(19), 3781–3786 (2015)

    CAS  Google Scholar 

  49. Y. Wang, D. Yang, X. Zhou, D. Ma, A. Vadim, T. Ahamad, S.M. Alshehri, Perovskite/polymer hybrid thin films for high external quantum efficiency photodetectors with wide spectral response from visible to near-infrared wavelengths. Adv. Opt. Mater. 5(12), 1700213 (2017)

    Google Scholar 

  50. T. Shi, W.-J. Yin, F. Hong, K. Zhu, Y. Yan, Unipolar self-doping behavior in perovskite CH3NH3PbBr3. Appl. Phys. Lett. 106(10), 103902 (2015)

    Google Scholar 

  51. Y. Wang, T. Gould, J.F. Dobson, H. Zhang, H. Yang, X. Yao, H. Zhao, Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3. Phys. Chem. Chem. Phys. 16(4), 1424–1429 (2014)

    CAS  Google Scholar 

  52. H. Zhao, Y. Han, Z. Xu, C. Duan, S. Yang, S. Yuan, Z. Yang, Z. Liu, S. Liu, A novel anion doping for stable CsPbI2Br perovskite solar cells with an efficiency of 15.56% and an open circuit voltage of 1.30 V. Adv. Energy Mater. 9(40), 1902279 (2019)

    CAS  Google Scholar 

  53. A. Jaffe, Y. Lin, C.M. Beavers, J. Voss, W.L. Mao, H.I. Karunadasa, High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties. ACS Cent. Sci. 2(4), 201 (2016)

    CAS  Google Scholar 

  54. G. Mannino, I. Deretzis, E. Smecca, A. La Magna, A. Alberti, D. Ceratti, D. Cahen, Temperature-dependent optical band gap in CsPbBr 3, MAPbBr3, and FAPbBr3 single crystals. J. Phys. Chem. Lett. 11(7), 2490–2496 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the fund for talent of Guangxi province, (Nos. T3120099202, T3120097921, C31200992001), Talent Model Base (AD19110157), Disinfection Robot Based on High Power AlGaN-based UVLEDs (No. BB31200014), Guangxi Science and Technology Program (AD19245132, AD20238093), and Guangxi University Foundation (A3120051010), China.

Author information

Authors and Affiliations

Authors

Contributions

YW and WHS conceived the idea. XQ and LL designed the experiments. XQ and LL carried out the device fabrication. LL and XQ carried out electrical characterizations. XQ, LL, LH,.and GL carried out the optical characterizations. LL carried out DFT calculations. All the authors analyzed and interpreted the data and wrote the paper.

Corresponding authors

Correspondence to Yukun Wang or W. H. Sun.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 514 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, X., Li, L., Li, G. et al. Lattice relaxation effect in RbxMA(1−x)PbBr3 single crystal to enhance optoelectronic performance of perovskite photodetectors. J Mater Sci: Mater Electron 33, 3438–3451 (2022). https://doi.org/10.1007/s10854-021-07396-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07396-y

Navigation