Skip to main content
Log in

Nitrite sensing behaviors of tailored bimetallic oxide CuMnO2 nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bimetallic oxide CuMnO2 with multiple lattice sites has many novel properties due to its special delafossite structure. In this work, CuMnO2 nanostructures were prepared via a facile hydrothermal method at 90 °C for 4 h. The prepared CuMnO2 nanostructures were fully characterized, confirming their delafossite structures with a nanoparticle size of about 10–30 nm and a band gap of 1.55 eV. The as-prepared CuMnO2 nanostructures were firstly applied on NaNO2 sensing by differential normal pulse voltammetry (DNPV) and electrochemical impedance spectra (EIS). Because CuMnO2 has smaller particle sizes and band gap, more catalytic centers were exposed and higher catalytic activity was expected. CuMnO2 showed a favorable and efficient electrocatalytic effect with a detection limit of 0.28 μM. The pH variation indicated that the oxidation of NaNO2 on CuMnO2 modified electrodes prefers a weak alkaline environment. Due to its rigid crystal structure, CuMnO2 exhibited long-term stability with the oxidation peak current retention is 96.1% over 20 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data sets supporting the results of this manuscript are included within it.

Code availability

Not applicable.

References

  1. L. Hao, Y. Zhang, R. Kubomura, S. Ozeki, S. Liu, H. Yoshida, Y. Jin, Y. Lu, Preparation and thermoelectric properties of CuAlO2 compacts by tape casting followed by SPS. J. Alloys Compd. 853, 157086 (2021)

    Article  CAS  Google Scholar 

  2. H. Liu, T. Zhao, L. Kong, X. Cao, W. Zhu, Y. Huang, M. Bo, Twinning enhanced electrical conductivity and surface activity of nanostructured CuCrO2 gas sensor. Sens. Actuator B 338, 129845 (2021)

    Article  CAS  Google Scholar 

  3. Q.-L. Liu, Z.-Y. Zhao, J.-H. Yi, Excess oxygen in delafossite CuFeO2+δ: synthesis, characterization, and applications in solar energy conversion. Chem. Eng. J. 396, 125290 (2020)

    Article  CAS  Google Scholar 

  4. I. Suzuki, Y. Mizuno, T. Omata, Tunable direct band gap of β-CuGaO2 and β-LiGaO2 solid solutions in the full visible range. Inorg. Chem. 58, 4262–4267 (2019)

    Article  CAS  Google Scholar 

  5. F. Bahmani, S.H. Kazemi, Y. Wu, L. Liu, Y. Xu, Y. Lei, CuMnO2-reduced graphene oxide nanocomposite as a free-standing electrode for high-performance supercapacitors. Chem. Eng. J. 375, 121966 (2019)

    Article  CAS  Google Scholar 

  6. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, P-type electrical conduction in transparent films of CuAlO2. Nature 389, 939–942 (1997)

    Article  CAS  Google Scholar 

  7. A.A.G. Santiago, R.L. Tranquilin, M.C. Oliveira, R.A.P. Ribeiro, S.R.D. Lazaro, M.A. Correa, F. Bohn, E. Longo, F.V. Motta, M.R.D. Bomio, Disclosing the structural, electronic, magnetic, and morphological properties of CuMnO2: a unified experimental and theoretical approach. J. Phys. Chem. C 124, 5378–5388 (2020)

    Article  CAS  Google Scholar 

  8. J. Töpfer, M. Trari, P. Gravereau, J.P. Chaminade, J.P. Doumerc, Crystal growth and reinvestigation of the crystal structure of crednerite. CuMnO2. Z. Krist. 210, 184–187 (1995)

    Google Scholar 

  9. R. Wei, P. Gong, M. Zhao, H. Tong, X. Tang, L. Hu, J. Yang, W. Song, X. Zhu, Y. Sun, Solution-processable epitaxial metallic delafossite oxide films. Adv. Funct. Mater. 30, 2002375 (2020)

    Article  CAS  Google Scholar 

  10. J. Shook, P.D. Borges, W.J. Geerts, L.M. Scolfaro, Evaluation of Ni doping for promoting favorable electronic structures in CuCrO2 and AgCrO2 from a first-principles perspective. Ceram. Int. 46, 26777–26783 (2020)

    Article  CAS  Google Scholar 

  11. J. Liu, Q. Hu, Y. Wang, Z. Yang, X. Fan, L. Liu, L. Guo, Achieving delafossite analog by in situ electrochemical self-reconstruction as an oxygen-evolving catalyst. Proc. Nat. Acad. Sci. 117, 202009180 (2020)

    Google Scholar 

  12. R. Wang, H. An, H. Zhang, X. Zhang, J. Feng, T. Wei, Y. Ren, High active radicals induced from peroxymonosulfate by mixed crystal types of CuFeO2 as catalysts in the water. Appl. Surf. Sci. 484, 1118–1127 (2019)

    Article  CAS  Google Scholar 

  13. A. Kumar, S. Ibraheem, T.A. Nguyen, R.K. Gupta, T. Maiyalagan, G. Yasin, Molecular-MN4 vs atomically dispersed M-N4-C electrocatalysts for oxygen reduction reaction. Coord. Chem. Rev. 446, 214122 (2021)

    Article  CAS  Google Scholar 

  14. A. Kumar, D.K. Das, V.K. Vashistha, S. Ibraheem, G. Yasin, S. Gautam, V. Sharma, A novel CoN4-driven self-assembled molecular engineering for oxygen reduction reaction. Int. J. Hydrog. Energy 46, 26499–26506 (2021)

    Article  CAS  Google Scholar 

  15. S. Ibraheem, X. Li, S.S.A. Shah, T. Najam, G. Yasin, R. Iqbal, S. Hussain, W. Ding, F. Shahzad, Tellurium triggered formation of Te/Fe-NiOOH nanocubes as an efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 13, 10972–10978 (2021)

    Article  CAS  Google Scholar 

  16. M. Nadeem, G. Yasin, M.H. Bhatti, M. Mehmood, M. Arif, L. Dai, Pt-M bimetallic nanoparticles (M = Ni, Cu, Er) supported on metal organic framework-derived N-doped nanostructured carbon for hydrogen evolution and oxygen evolution reaction. J. Power Sources 402, 34–42 (2018)

    Article  CAS  Google Scholar 

  17. M.S. Prévot, X.A. Jeanbourquin, W.S. Bourée, F. Abdi, D. Friedrich, R. van de Krol, N. Guijarro, F.L. Formal, K. Sivula, Evaluating charge carrier transport and surface states in CuFeO2 photocathodes. Chem. Mater. 29, 4952–4962 (2017)

    Article  Google Scholar 

  18. Y.D. Hyun, C.Y. Han, K. Jun-Hyuk, H. Sungmin, H. Adam, M.C. Buddie, Simple microwave-assisted synthesis of delafossite CuFeO2 as an anode material for sodium-ion batteries. ChemElectroChem 5, 2419–2423 (2018)

    Article  Google Scholar 

  19. G. Yasin, S. Ibrahim, S. Ibraheem, S. Ali, R. Iqbal, A. Kumar, M. Tabish, Y. Slimani, T.A. Nguyen, H. Xu, W. Zhao, Defective/graphitic synergy in a heteroatom-interlinked-triggered metal-free electrocatalyst for high-performance rechargeable zinc-air batteries. J. Mater. Chem. A 9, 18222 (2021)

    Article  CAS  Google Scholar 

  20. S. Ibraheem, S. Chen, L. Peng, J. Li, L. Li, Q. Liao, M. Shao, Z. Wei, Strongly coupled iron selenides-nitrogen-bond as an electronic transport bridge for enhanced synergistic oxygen electrocatalysis in rechargeable zinc-O2 batteries. Appl. Catal. B 265, 118569 (2020)

    Article  CAS  Google Scholar 

  21. S. Ibraheem, S. Chen, J. Li, W. Li, X. Gao, Q. Wang, Z. Wei, Three-dimensional Fe, N-decorated carbon-supported NiFeP nanoparticles as an efficient bifunctional catalyst for rechargeable zinc-O2 batteries. ACS Appl. Mater. Interfaces 11, 699–705 (2020)

    Article  Google Scholar 

  22. S. Ibraheem, S. Chen, J. Li, Q. Wang, Z. Wei, In situ growth of vertically aligned FeCoOOH– nanosheets/nanoflowers on Fe, N co-doped 3D-porous carbon as efficient bifunctional electrocatalysts for rechargeable zinc-O2 batteries. J. Mater. Chem. A 7, 9497 (2019)

    Article  CAS  Google Scholar 

  23. S. Velmurugan, Z.-X. Liu, T.C.-K. Yang, J.C. Juan, Rational design of built-in stannic oxide-copper manganate microrods p-n heterojunction for photoelectrochemical sensing of tetracycline. Chemosphere 271, 129788 (2021)

    Article  CAS  Google Scholar 

  24. S. Velmurugan, T.C.-K. Yang, J.C. Juan, J.-N. Chen, Preparation of novel nanostructured WO3/CuMnO2 p-n heterojunction nanocomposite for photoelectrochemical detection of nitrofurazone. J. Colloid Interface Sci. 596, 108–118 (2021)

    Article  CAS  Google Scholar 

  25. Y. Chen, T. Chen, X. Wu, G. Yang, CuMnO2 nanoflakes as pH-switchable catalysts with multiple enzyme-like activities for cysteine detection. Sens. Actuator B 279, 374–384 (2019)

    Article  CAS  Google Scholar 

  26. Y. Huang, X. Tian, Y. Nie, C. Yang, Y. Wang, Enhanced peroxymonosulfate activation for phenol degradation over MnO2 at pH 3.5–9.0 via Cu(II) substitution. J. Hazard. Mater. 360, 303–310 (2018)

    Article  CAS  Google Scholar 

  27. N. Benreguia, A. Abdi, O. Mahroua, M. Trari, Photoelectrochemical properties of the crednerite CuMnO2 and its application to hydrogen production and Mn+ reduction (Mn+ = Cd2+, Pd2+, Zn2+, Ni2+, and Ag+). J. Mater. Sci. Mater. Electron. 32, 10498–10509 (2021)

    Article  CAS  Google Scholar 

  28. E.A. Kirupa, A.M.E. Raj, C. Ravidhas, Ethanol sensing behaviour of CuMnO2 nanostructured thin films. J. Mater. Sci. Mater. Electron. 27, 4810–4815 (2016)

    Article  Google Scholar 

  29. N.M. Mahmoodi, Z. Hosseinabadi-Farahani, H. Chamani, Synthesis of nanoadsorbent and modeling of dye removal from wastewater using adaptive neuro-fuzzy inference system. Desalin. Water Treat. 75, 245–252 (2017)

    Article  CAS  Google Scholar 

  30. L. Mao, S. Mohan, Y. Mao, Delafossite CuMnO2 as an efficient bifunctional oxygen and hydrogen evolution reaction electrocatalyst for water splitting. J. Electrochem. Soc. 166, H233–H242 (2019)

    Article  CAS  Google Scholar 

  31. N. Benreguia, A. Barnabé, M. Trari, Preparation and characterization of the semiconductor CuMnO2 by sol-gel route. Mater. Sci. Semicond. Process 56, 14–19 (2016)

    Article  CAS  Google Scholar 

  32. D. Xiong, Q. Zhang, Z. Du, S.K. Verma, H. Li, X. Zhao, Low temperature hydrothermal synthesis mechanism and thermal stability of p-type CuMnO2 nanocrystals. New J. Chem. 40, 6498–6504 (2016)

    Article  CAS  Google Scholar 

  33. A.M. Fathi, S.A. Abdel-Hameed, F.H. Margha, N.A. Ghany, Electrocatalytic oxygen evolution on nanoscale crednerite (CuMnO2) composite electrode. Z. Phys. Chem. 230, 1519–1530 (2016)

    Article  CAS  Google Scholar 

  34. D. Xiong, H. Gao, Y. Deng, Y. Qi, Z. Du, X. Zeng, H. Li, Impact of Mg doping on the optical and electrical properties of ptype CuMnO2 ultrathin nanosheets. J. Mater. Sci. Mater. Electron. 31, 5452–5461 (2020)

    Article  CAS  Google Scholar 

  35. G. Saeed, A. Alam, P. Bandyopadhyay, S. Lim, N.H. Kim, J.H. Lee, Development of hierarchically structured nanosheet arrays of CuMnO2-MnxOy@graphene foam as a nanohybrid electrode material for high-performance asymmetric supercapacitor. J. Alloys Compd. 858, 158343 (2021)

    Article  CAS  Google Scholar 

  36. S. Purushothaman, K. Jeyasubramanian, M. Muthuselvi, G.S. Hikku, Cu2O nanosheets decorated CuMnO2 nanosphere electrodeposited on Cu foil as high-performance supercapacitor electrode. Mater. Sci. Semicond. Process 121, 105366 (2021)

    Article  CAS  Google Scholar 

  37. A.M.E. Raj, Y. Jing, Y. Zhang, X. Wang, S. Fang, J. Wang, G. Li, Crystal growth of bimetallic oxides CuMnO2 with tailored valence states for optimum electrochemical energy storage. Cryst. Growth Des. 18, 6107–6116 (2018)

    Article  Google Scholar 

  38. L. Wang, M. Arif, G. Duan, S. Chen, X. Liu, A high performance quasi-solid-state supercapacitor based on CuMnO2 nanoparticles. J. Power Sources 355, 53–61 (2017)

    Article  CAS  Google Scholar 

  39. M.S. Alam, M.M. Rahman, H.M. Marwani, M.A. Hasnat, Insights of temperature dependent catalysis and kinetics of electro-oxidation of nitrite ions on a glassy carbon electrode. Electrochim. Acta 362, 137102 (2020)

    Article  CAS  Google Scholar 

  40. Y. Shen, C. Ma, S. Zhang, P. Li, W. Zhu, X. Zhang, J. Gao, H. Song, D. Chen, D. Pang, A. Li, Nanosilver and protonated carbon nitride co-coated carbon cloth fibers based non-enzymatic electrochemical sensor for determination of carcinogenic nitrite. Sci. Total Environ. 742, 140622 (2020)

    Article  CAS  Google Scholar 

  41. X. Li, N. Zou, Z. Wang, Y. Sun, H. Li, C. Gao, T. Wang, X. Wang, An electrochemical sensor for determination of nitrite based on Au nanoparticles decorated MoS2 nanosheets. Chem. Pap. 74, 441–449 (2020)

    Article  CAS  Google Scholar 

  42. P. Barathi, A. Devaraj, A. Subramania, Mesoporous carbon/α-Fe2O3 nanoleaf composites for disposable nitrite sensors and energy storage applications. ACS Omega 5, 32160–32170 (2020)

    Article  CAS  Google Scholar 

  43. A. Shaikh, B.K. Singh, S. Parida, Natural oil derived carbon nano-onions as a sensitive electrocatalyst for nitrite determination. Mater. Chem. Phys. 235, 121744 (2019)

    Article  CAS  Google Scholar 

  44. C. Sun, W. Pan, D. Zheng, Y. Zheng, J. Zhu, Electrochemical sensor for nitrite using a glassy carbon electrode modified with Cu/CBSA nanoflower networks. Anal. Methods 11, 4998–5006 (2019)

    Article  CAS  Google Scholar 

  45. S.H.M. Taib, K. Shameli, P.M. Nia, M. Etesami, M. Miyake, R.R. Ali, E. Abouzari-Lotf, Z. Izadiyan, Electrooxidation of nitrite based on green synthesis of gold nanoparticles using Hibiscus sabdariffa leaves. J. Taiwan Inst. Chem. Eng. 95, 616–626 (2019)

    Article  Google Scholar 

  46. Z. Fu, W. Gao, T. Yu, L. Bi, Study of Bi-directional detection for ascorbic acid and sodium nitrite based on Eu-containing luminescent polyoxometalate. Talanta 195, 463–471 (2019)

    Article  CAS  Google Scholar 

  47. A. Shaikh, B. Kr Singh, D. Mohapatra, S. Parida, Nitrogen-doped carbon nano-onions as a metal-free electrocatalyst. Electroanalysis 10, 222–231 (2019)

    CAS  Google Scholar 

  48. Q. Sheng, D. Liu, J. Zheng, A nonenzymatic electrochemical nitrite sensor based on Pt nanoparticles loaded Ni(OH)2/multi-walled carbon nanotubes nanocomposites. J. Electroanal. Chem. 796, 9–16 (2017)

    Article  CAS  Google Scholar 

  49. C.E. Zou, B. Yang, D. Bin, J. Wang, S. Li, P. Yang, C. Wang, Y. Shiraishi, Y. Du, Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite. J. Colloid Interface Sci. 488, 135–141 (2017)

    Article  CAS  Google Scholar 

  50. B. Yuan, J. Zhang, R. Zhang, H. Shi, N. Wang, J. Li, F. Ma, D. Zhang, Cu-based metal–organic framework as a novel sensing platform for the enhanced electro-oxidation of nitrite. Sens. Actuator B 222, 632–637 (2016)

    Article  CAS  Google Scholar 

  51. M.-L. Zhang, D.-K. Huang, Z. Cao, Y.-Q. Liu, J.-L. He, J.-F. Xiong, Z.-M. Feng, Y.-L. Yin, Determination of trace nitrite in pickled food with a nano-composite electrode by electrodepositing ZnO and Pt nanoparticles on MWCNTs substrate. LWT Food Sci. Technol 64, 663–670 (2015)

    Article  CAS  Google Scholar 

  52. X. Zeng, Q. Pan, Y. Guo, Z. Wu, Y. Sun, Y. Dang, J. Cao, J. He, D. Pan, Potential mechanism of nitrite degradation by Lactobacillus fermentum RC4 based on proteomic analysis. J. Proteom. 194, 70–78 (2019)

    Article  CAS  Google Scholar 

  53. R. Wang, Z. Wang, X. Xiang, R. Zhang, X. Shi, X. Sun, MnO2 nanoarrays: an efficient catalyst electrode for nitrite electroreduction toward sensing and NH3 synthesis applications. Chem. Commun. 54, 10340–10342 (2018)

    Article  CAS  Google Scholar 

  54. M. Moyo, P. Mudarikwa, M. Shumba, J.O. Okonkwo, Voltammetric sensing of nitrite in aqueous solution using titanium dioxide anchored multiwalled carbon nanotubes. Ionics 24, 2489–2498 (2018)

    Article  CAS  Google Scholar 

  55. H. Huang, L. Lv, F. Xu, J. Liao, S. Liu, H.-R. Wen, PrFeO3-MoS2 nanosheets for use in enhanced electro-oxidative sensing of nitrite. Microchim Acta 184, 4141–4149 (2017)

    Article  CAS  Google Scholar 

  56. Z.W. Peng, D. Yuan, Z.W. Jiang, Y.F. Li, Novel metal-organic gels of bis(benzimidazole)-based ligands with copper(II) for electrochemical selectively sensing of nitrite. Electrochim. Acta 238, 1–8 (2017)

    Article  CAS  Google Scholar 

  57. J. Wang, N. Hui, A nanocomposite consisting of flower-like cobalt nanostructures, graphene oxide and polypyrrole for amperometric sensing of nitrite. Microchim. Acta 184, 2411–2418 (2017)

    Article  CAS  Google Scholar 

  58. M. Poienar, A. Lungu, P. Sfirloaga, M. Lungu, C.V. Mihali, P. Vlazan, Use of ultrasoundassisted coprecipitation route to obtain CuMnO2 semiconductor nanomaterials. Chem. Pap. 73, 1541–1546 (2019)

    Article  CAS  Google Scholar 

  59. T. Ouiram, C. Moonla, A. Preechaworapun, T. Tangkuaram, Enzyme-free Cu2O@MnO2/GCE for hydrogen peroxide sensing. Electroanalysis 31, 1–8 (2019)

    Article  Google Scholar 

  60. A. Minelli, P. Dolcet, S. Diodati, S. Gardonio, C. Innocenti, D. Badocco, S. Gialanella, P. Pastore, L. Pandolfo, A. Caneschi, A. Trapanantif, S. Gross, Pursuing the stabilisation of crystalline nanostructured magnetic manganites through a green low temperature hydrothermal synthesis. J. Mater. Chem. C 5, 3359–3371 (2017)

    Article  CAS  Google Scholar 

  61. T. Aditya, J. Jana, N.K. Singh, A. Pal, T. Pal, Remarkable facet selective reduction of 4nitrophenol by morphologically tailored (111) faceted Cu2O nanocatalyst. ACS Omega 2, 1968–1984 (2017)

    Article  CAS  Google Scholar 

  62. F.C. de Godoi, E. Rodriguez-Castellon, E. Guibal, M.M. Beppu, An XPS study of chromate and vanadate sorption mechanism by chitosan membrane containing copper nanoparticles. Chem. Eng. J. 234, 423–429 (2013)

    Article  Google Scholar 

  63. J. Ghijsen, L.H. Tjeng, J.V. Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Electronic structure of Cu2O and CuO. Phys. Rev. B 38, 11322–11330 (1988)

    Article  CAS  Google Scholar 

  64. Q. Zhang, D. Xiong, H. Li, D. Xia, H. Tao, X. Zhao, A facile hydrothermal route to synthesize delafossite CuMnO2 nanocrystals. J. Mater. Sci. Mater. Electron. 26, 10159–10163 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by Six Talent Climax Foundation of Jiangsu Province (2017-JZ-064), Jiangsu Provincial Key R&D Project (BE2016704, BE2016187), the scholarship program of China Scholarship Council (201806715033), and Practice and Innovation Project of College Students in Jiangsu Province (S202110300299).

Author information

Authors and Affiliations

Authors

Contributions

HH: methodology, investigation, data curation, writing—original draft, funding acquisition. YC: investigation, data curation. FW: investigation, data curation. XL: investigation, data curation. YG: conceptualization, methodology, writing—review & editing.

Corresponding authors

Correspondence to Hui He or Yan Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The authors declare that there is no ethics problems.

Consent to participate

The authors consent to participate.

Consent for publication

The authors consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Chen, Y., Wang, F. et al. Nitrite sensing behaviors of tailored bimetallic oxide CuMnO2 nanostructures. J Mater Sci: Mater Electron 33, 1140–1153 (2022). https://doi.org/10.1007/s10854-021-07390-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07390-4

Navigation