Skip to main content
Log in

Synergistic photocatalytic removal of organic pollutants in the aqueous medium using TiO2–Co3O4 decorated graphene oxide nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Organic pollutants generated from different industrial sources cause soil and water pollutions, which creates an ecological imbalance. Metal oxide and carbon-based nanocomposites are extensively used to remediate industrial pollution. In this study, TiO2–Co3O4 and TiO2–Co3O4/graphene oxide nanocomposites were prepared and utilized to degrade the organic pollutants such as crystal violet, methylene blue and ofloxacin. The structural, optical and morphological properties of the nanocomposites were confirmed by XRD, FTIR, UV–Vis, FE-SEM, TEM and BET analysis. The XRD and SAED pattern of the nanocomposites confirms the formation of titanium dioxide-cobalt oxide with graphene oxide. The broadening of the hydroxyl group (3556 and 1638 cm−1) and metal oxide band was observed from the FTIR spectra after the incorporation of cobalt oxide and graphene oxide. The EDX spectra confirm the occurrence of Ti, Co, and O peaks in TiO2–Co3O4 (TC), whereas GO-TiO2–Co3O4 (GTC) nanocomposites reveal the occurrence of C, Ti, Co, and O. In the dark condition, the prepared catalyst shows less than 10% of organic pollutant removal. Under light irradiation, GTC catalysts completely degraded the MB, CV and OFX, whereas TC showed 62%, 54%, and 31%, respectively. The enhancement in the photocatalytic removal of organic molecules is due to the decreased particle size, surface area and bandgap of GTC. The photocatalytic behaviour of GTC is significantly higher than the TC, thus it concluded that GTC has the higher efficiency towards the removal of organic pollutants present in the aqueous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Herrero, P.K. Thornton, P. Gerber, R.S. Reid, Curr. Opin. Environ. Sustain. 1, 111 (2009)

    Article  Google Scholar 

  2. S. Issaka, M.A. Ashraf, Geol. Ecol. Landsc. 1, 1 (2017)

    Article  Google Scholar 

  3. P. Chowdhary, R.N. Bharagava, S. Mishra, N. Khan, Environmental Concerns and Sustainable Development (Springer, Singapore, 2020), pp. 235–256

    Book  Google Scholar 

  4. M.A. Khan, A.M. Ghouri, Res. World: J. Arts Sci. Commer. 2, 276 (2011)

    Google Scholar 

  5. K. Noguera-Oviedo, D.S. Aga, J. Hazard. Mater. 316, 242 (2016)

    Article  CAS  Google Scholar 

  6. O. Achi, J. Appl. Technol. Environ. Sanit. 1, 75 (2011)

    Google Scholar 

  7. A. Anju, S.P. Ravi, S. Bechan, J. Water Resour. Prot. (2010). https://doi.org/10.4236/jwarp.2010.25050

    Article  Google Scholar 

  8. G.T. Pecl, M.B. Araújo, J.D. Bell, J. Blanchard, T.C. Bonebrake, I.-C. Chen, T.D. Clark, R.K. Colwell, F. Danielsen, B. Evengård, Science (2017). https://doi.org/10.1126/science.aai9214

    Article  Google Scholar 

  9. R. Riaz, C.A. de Wit, R.N. Malik, Sci. Total Environ. 760, 143351 (2021)

    Article  CAS  Google Scholar 

  10. R. Chandrappa, D.B. Das, Environmental Health-Theory and Practice (Springer, Cham, 2021), pp. 101–125

    Book  Google Scholar 

  11. M. Tekere, Methods for Bioremediation of Water and Wastewater Pollution (Springer, Cham, 2020), pp. 393–413

    Book  Google Scholar 

  12. G. Sujatha, S. Shanthakumar, F. Chiampo, Environments 7, 47 (2020)

    Article  Google Scholar 

  13. K. Khan, A.K. Tareen, M. Aslam, R.U.R. Sagar, B. Zhang, W. Huang, A. Mahmood, N. Mahmood, K. Khan, H. Zhang, Nano-Micro Lett. 12, 1 (2020)

    Article  Google Scholar 

  14. A. Ramesh, P. Tamizhdurai, S. Gopinath, K. Sureshkumar, E. Murugan, K. Shanthi, Heliyon 5, e01005 (2019)

    Article  CAS  Google Scholar 

  15. A.M. Abu-Dief, W.S. Mohamed, Curr. Catal. 9, 128 (2020)

    Article  CAS  Google Scholar 

  16. A. Ramesh, M. Neelaveni, P. Tamizhdurai, R. Ramya, N. Sasirekha, K. Shanthi, Mater. Chem. Phys. 229, 421 (2019)

    Article  CAS  Google Scholar 

  17. A. Padmanaban, G. Murugadoss, N. Venkatesh, S. Hazra, M.R. Kumar, R. Tamilselvi, P. Sakthivel, J. Environ. Chem. Eng. 9, 105976 (2021)

    Article  CAS  Google Scholar 

  18. M. Nasr, C. Eid, R. Habchi, P. Miele, M. Bechelany, Chemsuschem 11, 3023 (2018)

    Article  CAS  Google Scholar 

  19. S. Saber-Samandari, S. Saber-Samandari, H. Joneidi-Yekta, M. Mohseni, Chem. Eng. J. 308, 1133 (2017)

    Article  CAS  Google Scholar 

  20. G. Fan, J. Tong, F. Li, Ind. Eng. Chem. Res. 51, 13639 (2012)

    Article  CAS  Google Scholar 

  21. N. Kumar, V.C. Srivastava, ACS Omega 3, 10233 (2018)

    Article  CAS  Google Scholar 

  22. S. Steplin Paul Selvin, A. Ganesh Kumar, L. Sarala, R. Rajaram, A. Sathiyan, J. Princy Merlin, I. Sharmila Lydia, ACS Sustain. Chem. Eng. 6, 258 (2018)

    Article  Google Scholar 

  23. D. Sivaraj, K. Vijayalakshmi, M. Srinivasan, P. Ramasamy, Ceram. Int. 47, 25074–25080 (2021)

    Article  CAS  Google Scholar 

  24. W. Li, R. Liang, A. Hu, Z. Huang, Y.N. Zhou, RSC Adv. 4, 36959 (2014)

    Article  CAS  Google Scholar 

  25. L. Gao, J. Diwu, Q. Zhang, H. Xu, X. Chou, J. Tang, C. Xue, J. Nanomater. (2015). https://doi.org/10.1155/2015/618492

    Article  Google Scholar 

  26. R. Ranjith, V. Renganathan, S.-M. Chen, N.S. Selvan, P.S. Rajam, Ceram. Int. 45, 12926 (2019)

    Article  CAS  Google Scholar 

  27. P. Scherrer, Nachr. Ges. Wiss. Göttingen 2, 98 (1918)

    Google Scholar 

  28. J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. 11, 102 (1978)

    Article  CAS  Google Scholar 

  29. K. Vijayalakshmi, D. Sivaraj, RSC Adv. 6, 9663 (2016)

    Article  CAS  Google Scholar 

  30. P. Liu, Y. Huang, L. Wang, W. Zhang, Synth. Met. 177, 89 (2013)

    Article  CAS  Google Scholar 

  31. S.H. Alwan, H.A.H. Alshamsi, L.S. Jasim, J. Mol. Struct. 1161, 356 (2018)

    Article  CAS  Google Scholar 

  32. A.A. Ensafi, M. Jafari-Asl, B. Rezaei, Talanta 103, 322 (2013)

    Article  CAS  Google Scholar 

  33. P. Liu, S. Gao, Y. Wang, F. Zhou, Y. Huang, J. Luo, Composites B 202, 108406 (2020)

    Article  CAS  Google Scholar 

  34. X. Yu, J. Zhang, J. Zhang, J. Niu, J. Zhao, Y. Wei, B. Yao, Chem. Eng. J. 374, 316 (2019)

    Article  CAS  Google Scholar 

  35. C.-H. Shen, X.-J. Wen, Z.-H. Fei, Z.-T. Liu, Q.-M. Mu, Chem. Eng. J. 391, 123612 (2020)

    Article  CAS  Google Scholar 

  36. M. Han, M. Li, X. Wu, J. Zeng, S. Liao, Electrochim. Acta 154, 266 (2015)

    Article  CAS  Google Scholar 

  37. S. Samiee, E.K. Goharshadi, J. Nanopart. Res. 16, 1 (2014)

    Article  CAS  Google Scholar 

  38. S. Bai, L. Du, J. Sun, R. Luo, D. Li, A. Chen, C.-C. Liu, RSC Adv. 6, 60109 (2016)

    Article  CAS  Google Scholar 

  39. S. Gugulothu, S.A. Singh, G. Madras, J. Environ. Chem. Eng. 5, 4663 (2017)

    Article  CAS  Google Scholar 

  40. M.S. Xaba, J.-H. Noh, K. Mokgadi, R. Meijboom, Appl. Surf. Sci. 440, 1130 (2018)

    Article  CAS  Google Scholar 

  41. H.H. Abdelghafar, G.A. Ali, O.A. Fouad, S.A. Makhlouf, Desalin. Water Treat. 53, 2980 (2015)

    Article  CAS  Google Scholar 

  42. K. Pourzare, S. Farhadi, Y. Mansourpanah, Acta Chim. Slov. 64, 945 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciated Taif University Researchers Supporting Project Number TURSP-2020/267, Taif University, Taif, Saudi Arabia. This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Ranjith or Taghrid S. Alomar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjith, R., Ravikumar, S., Pandiyan, V. et al. Synergistic photocatalytic removal of organic pollutants in the aqueous medium using TiO2–Co3O4 decorated graphene oxide nanocomposite. J Mater Sci: Mater Electron 33, 9438–9447 (2022). https://doi.org/10.1007/s10854-021-07388-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07388-y

Navigation