Skip to main content
Log in

An investigation over the effect of the reducing agent on the properties of the ZnO-reinforced Ni–P coatings

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electroless ZnO-reinforced Ni–P coatings are developed on mild steel substrates in the Electroless bath, which contains an optimum concentration of ZnO nanoparticles. This work focuses on the characteristics and properties of the Ni–P–ZnO coatings developed at different concentrations of reducing agent (sodium hypophosphite). Results confirm that the reducing agent greatly influences the deposition rate, surface roughness, hardness, and corrosion resistance of the coating. Reducing agent concentration influences the phosphorus present in the coating. An increase in the amorphous nature of the coating with an increase in reducing agent concentration improves the resistance to corrosion of the coating, but at the same time, it decreases the microhardness of the coating. High phosphorus deposition at the maximum amount of reducing agent concentration lowers the microhardness of the coating. The Hard Ni3P crystalline phase formed at 400 °C enhances the resistance to corrosion and microhardness of the coating. Scanning electron microscopy and X-ray diffraction studies are used to characterize the Ni–P–ZnO coating. The microhardness and corrosion resistance of the coating were evaluated using a Vickers microhardness tester and potentiodynamic polarization studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.R. Rahimi, H. Modarres, M. Abdouss, Surf. Eng. 25, 367 (2013)

    Article  Google Scholar 

  2. S. Kundu, S.K. Das, P. Sahoo, Mater. Sci. Eng. Proc. 149, 1 (2016)

    Google Scholar 

  3. S. Sharma, A. Sharma, J. Mater. Eng. Perform. 25, 4383 (2016)

    Article  CAS  Google Scholar 

  4. S. Karthikeyan, L. Vijayaraghavan, Trans. IMF 94, 265 (2016)

    Article  CAS  Google Scholar 

  5. C. Vinod Babu, K. Ramji, M.V.A.R. Bahubalendruni, J. BioTriboCorros. 7, 1 (2021)

    Google Scholar 

  6. K.G. Keong, W. Sha, S. Malinov, Surf. Coating Technol. 168, 263 (2003)

    Article  CAS  Google Scholar 

  7. J.N. Balaraju, S.K. Seshadri, Met. Fin. 97, 8 (1999)

    Article  CAS  Google Scholar 

  8. S. Mauro, Dario, Mater. Technol. 51, 413 (2017)

    Google Scholar 

  9. H.A. Sorkhabi, S.H. Rafizadeh, Surf. Coatings Technol. 176, 318 (2004)

    Article  Google Scholar 

  10. B.S. Choudhury, R.S. Sen, B. Oraon, G. Majumdar, Surf. Eng. 25, 410 (2009)

    Article  CAS  Google Scholar 

  11. M. Yan, H.G. Ying, T.Y. Ma, Surf. Coating Technol. 202, 5909 (2008)

    Article  CAS  Google Scholar 

  12. L. Gil, L. Jimenez, A.C. Castro, E.S. Puchi-Cabrera, M.H. Staia, Rev. de Metal 44, 66 (2008)

    Article  CAS  Google Scholar 

  13. X.W. Li, Z.L. Chen, H.B. Hou, L. Hao, Corros. Eng. Sci. Technol. 45, 277 (2013)

    Article  Google Scholar 

  14. G.G. Zusmanovich, Mater. Sci. Heat Treat. Metals 2, 229 (1960)

    Article  Google Scholar 

  15. F.S. Goettems, J.Z. Ferreira, Mater. Res. 20, 1300 (2017)

    Article  CAS  Google Scholar 

  16. J.N. Balaraju, S.K. Seshadri, Trans. IMF 77, 84 (1999)

    Article  CAS  Google Scholar 

  17. Z.A. Hamid, M.T.A. Elkhair, Mater. Lett. 57, 720 (2002)

    Article  Google Scholar 

  18. S.A. Gawad, A.M. Baraka, M.S. Morsi, Int. J. Electrochem. Sci. 8, 1722 (2013)

    Google Scholar 

  19. A. Farzaneh, M. Mohammadi, M. Ehteshamzadeha, F. Mohammadi, Appl. Surf. Sci. 276, 697 (2013)

    Article  CAS  Google Scholar 

  20. S. Karthikeyan, B. Ramamoorthy, Appl. Surf. Sci. 307, 654 (2014)

    Article  CAS  Google Scholar 

  21. P. Gadhari, P. Sahoo, Proced. Mater. Sci. 6, 623 (2014)

    Article  CAS  Google Scholar 

  22. J.N. Balaraju, K.S. Rajam, Int. J. Electrochem. Sci. 2, 747 (2007)

    CAS  Google Scholar 

  23. D. Dong, X.H. Chen, W.T. Xiao, G.B. Yang, P.Y. Zhang, Appl. Surf. Sci. 255, 7051 (2009)

    Article  CAS  Google Scholar 

  24. X.H. Chen, C.S. Chen, H.N. Xiao, H.B. Liu, L.P. Zhou, S.L. Li, G. Zhang, Tribol. Int. 39, 22 (2006)

    Article  CAS  Google Scholar 

  25. M. Islam, M.R. Azhar, N. Fredj, M. Aleman, O.R. Oloyede, A.A. Almajid, S.I. Shah, Surf. Coating Technol. 261, 141 (2015)

    Article  CAS  Google Scholar 

  26. J.N. Balaraju, V. Ezhil Selvi, K.S. Rajam, Mater. Chem. Phys. 120, 546 (2010)

    Article  CAS  Google Scholar 

  27. S.A. Gawad, A.M. Baraka, M.S. Morsi, M.S.A. Eltoum, Int. J. Electrochem. Sci. 8, 1722 (2013)

    Google Scholar 

  28. J.N. Balaraju, T.S.N.S. Narayanan, S.K. Seshadri, J. Solid State Electrochem. 5, 334 (2001)

    Article  CAS  Google Scholar 

  29. G.Y. Zou, H. Zhang, Z. Zou, Arch. Metall. Mater. 60, 865 (2015)

    Article  Google Scholar 

  30. C. Vinod Babu, Mater. Res. Express 6, 025030 (2018)

    Article  Google Scholar 

  31. Z. Yang, H. Xu, M. Li, Y. Shi, Y. Huang, H. Li, Thin Solid Films 466, 86 (2004)

    Article  CAS  Google Scholar 

  32. M. Franco, W. Sha, S. Malinov, Surf. Coatings Technol. 235, 755 (2013)

    Article  CAS  Google Scholar 

  33. C.Vinod Babu, K. Ramji, Mater. Res. Innov. 24, 67 (2020)

    Article  Google Scholar 

  34. R. Hu, Y. Su, Y. Liu, H. Liu, Y. Chen, C. Cao, H. Ni, Nanoscale Res. Lett. 198, 1 (2018)

    Google Scholar 

  35. J.N. Balaraju, K.S. Rajam, Surf. Coatings Technol. 195, 154 (2005)

    Article  CAS  Google Scholar 

  36. C. Vinod Babu, K. Ramji, J. BioTriboCorros. 4, 1 (2018)

    Google Scholar 

  37. S. Ranganatha, T.V. Venkatesha, K. Vathsala, Appl. Surf. Sci. 256, 7377 (2010)

    Article  CAS  Google Scholar 

  38. L.G. Jiaqiang, L. Lei, S. Wu. Yating, W. Bin, W. Hu, Surf. Coating Technol. 200, 5836 (2005)

    Article  Google Scholar 

  39. C. Vinod Babu, U. Sudhakar, R.C. Sharma, J. Critical Rev. 7, 268 (2020)

    Google Scholar 

  40. C. Vinod Babu, K. Ramji, G. Thirumala Rao, Adv. Mater. Proc. Technol. XX, 1 (2020)

Download references

Acknowledgements

One of the authors, Vinod Babu Chintada and Thirumala Rao Gurugubelli, wishes to express their gratitude to the GMRIT management for providing financial assistance through the SEED grant for the research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinod Babu Chintada, Thirumala Rao Gurugubelli or Ravindranadh Koutavarapu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chintada, V.B., Gurugubelli, T.R. & Koutavarapu, R. An investigation over the effect of the reducing agent on the properties of the ZnO-reinforced Ni–P coatings. J Mater Sci: Mater Electron 33, 950–958 (2022). https://doi.org/10.1007/s10854-021-07366-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07366-4

Navigation