Skip to main content
Log in

Effect of co-dopant proportion on the structural, optical and magnetic properties of pristine NiO nanoparticles synthesized by Sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this present work, the pristine and the different percentages of co-doped NiO nanoparticles have been successfully synthesized through the sol–gel method. The X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), UV–Visible spectroscopy (UV-Vis), Fourier Transform Infra-Red Spectroscopy (FT-IR), and Vibrating Sample Magnetometer (VSM) were used to study the structural, morphological, optical, functional, and magnetic properties of the synthesized materials. The XRD patterns confirmed the formation of cubic phased NiO with their crystallite size, microstrain, dislocation density was estimated, and the average crystallite size increased with co-dopant inclusion. By introducing the co-dopant proportion in NiO lattice, the intensity of optical absorption was found to increase and the optical bandgap decreased from (Eg = 3.6, 3.54, 3.50 eV) due to quantum size effect. SEM result exhibits that the particles are spherical-shaped morphology. The VSM examination shows the magnetic transition of soft to hard-ferromagnetism in room temperature on Zn, Mn co-dopant ions occupying Ni translational symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. A. Neubecker, T. Pompl, T. Doll, W. Hansch, I. Eisele, Thin Solid Films 310, 19 (1997). https://doi.org/10.1016/S0040-6090(97)00329-5

    Article  CAS  Google Scholar 

  2. G.M. Whitesides, Small 1, 172 (2005). https://doi.org/10.1002/smll.200400130

    Article  CAS  Google Scholar 

  3. I. Yuko, W. Naoto, Y. Junichiro, Y. Saori, K. Yoshihide, K. Eriko, T. Hiroyuki, Phys. B 329, 862 (2003). https://doi.org/10.1016/S0921-4526(02)02578-4

    Article  CAS  Google Scholar 

  4. L. Schmidt-Mende, J.L. MacManus-Driscoll, Mater. Today. 10, 40 (2007). https://doi.org/10.1016/S1369-7021(07)70078-0

    Article  CAS  Google Scholar 

  5. R. Deng, B. Yao, Y.F. Li, Y. Xu, J.C. Li, B.H. Li, J. Lumin. 134, 240 (2013). https://doi.org/10.1016/j.jlumin.2012.08.039

    Article  CAS  Google Scholar 

  6. Q.A. Pankhurst, J. Connolly, S. Jones, J. Dobson, J Phys D 36, R167 (2003). https://doi.org/10.1088/0022-3727/36/13/201

    Article  CAS  Google Scholar 

  7. S. Farhadi, Z. Roostaei-Zaniyani, Polyhedron 30, 971 (2011). https://doi.org/10.1016/j.poly.2010.12.044

    Article  CAS  Google Scholar 

  8. S.F. Wang, L.Y. Shi, X. Feng, S.R. Ma, Mater Lett. 67, 1549 (2007). https://doi.org/10.1016/j.matlet.2006.07.076

    Article  CAS  Google Scholar 

  9. A. Santhoshkumar, H.P. Kavitha, R. Suresh, J. Adv. Chem. Sci. 2, 230 (2016)

    Google Scholar 

  10. W. Li, P. Haldar, Electrochem Solid State Lett. 13, B47 (2010). https://doi.org/10.1149/1.3313347

    Article  CAS  Google Scholar 

  11. Z. Parsaee, Ultrason Sonochem. 44, 120 (2018). https://doi.org/10.1016/j.ultsonch.2018.02.021

    Article  CAS  Google Scholar 

  12. N.N.M. Zorkipli, N.H.M. Kaus, A.A. Mohamad, Procedia Chem. 19, 626 (2016). https://doi.org/10.1016/j.proche.2016.03.062

    Article  CAS  Google Scholar 

  13. L.G. Teoh, K.D. Li, Mater Trans. 53, 2135 (2012). https://doi.org/10.2320/matertrans.M2012244

    Article  CAS  Google Scholar 

  14. M. Qamara, M.A. Gondal, Z.H. Yamania, J Mol Catal A 341, 83 (2011)

    Article  Google Scholar 

  15. T.L. Lai, Y.Y. Shu, G.L. Huang, C.C. Lee, C.B. Wang, J Alloys Compd. 450, 318 (2008). https://doi.org/10.1016/j.jallcom.2006.10.114

    Article  CAS  Google Scholar 

  16. P.V. Kumar, A.J. Ahamed, M. Karthikeyan, SN Appl. Sci. (2019). https://doi.org/10.1007/s42452-019-1113-0

    Article  Google Scholar 

  17. I.S. Grace, J. Vinola, S. Deepapriya, D.R. John, A. Aslinjensipriya, R.S. Reena, A. Chamundeeswari, M. Jose, D.S. Jerome, AIP Conf. Proc. (2020). https://doi.org/10.1063/5.0009740

    Article  Google Scholar 

  18. J. Al-Boukhari, L. Zeidan, A. Khalaf, R. Awad, Chem. Phys. 516, 116 (2018). https://doi.org/10.1016/j.chemphys.2018.07.046

    Article  CAS  Google Scholar 

  19. A. Nakrela, N. Benramdane, A. Bouzidi, A. Kebba, M. Medles, C. Mathieu, Results Phys. 6, 133 (2016). https://doi.org/10.1016/j.rinp.2016.01.010

    Article  Google Scholar 

  20. K. Anandan, V. Rajendran, MSEB. 199, 48 (2015). https://doi.org/10.1016/j.mseb.2015.04.015

    Article  CAS  Google Scholar 

  21. S. Sankar, S.K. Sharma, N. An, H. Lee, D.Y. Kim, Y.B. Im, Y.D. Cho, R. Sankar, G.S. Ponnusamy, L.P. Raji, L.P. Purohit, Optik 127, 10727 (2016). https://doi.org/10.1016/j.ijleo.2016.08.126

    Article  CAS  Google Scholar 

  22. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  23. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  24. V. Uvarov, I. Popov, Mater. Charact. 85, 111 (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  25. V. Boiko, Z. Dai, M. Markowska, C. Leonelli, C. Mortalò, F. Armetta, F. Ursi, G. Nasillo, M.L. Saladino, D. Hreniak, Sci. Rep. (2021). https://doi.org/10.1038/s41598-020-80335-9

    Article  Google Scholar 

  26. O. Mondal, M. Pal, R. Singh, D. Sen, S. Mazumder, M. Pal, J. Appl. Cryst. 48, 836 (2015). https://doi.org/10.1107/S1600576715006664

    Article  CAS  Google Scholar 

  27. T.M.K. Thandavan, S.M.A. Gani, C.S. Wong, R.M. Nor, J Nondestruct Eval. 34, 1 (2015)

    Article  Google Scholar 

  28. A.B. Andrade, N.S. Ferreira, M.E.G. Valerio, RSC Adv. 7, 26839 (2017). https://doi.org/10.1039/C7RA01582H

    Article  CAS  Google Scholar 

  29. M. Alagiri, S. Ponnusamy, C. Muthamizhchelvan, J. Mater. Sci. 23, 728 (2012). https://doi.org/10.1007/s10854-011-0479-6

    Article  CAS  Google Scholar 

  30. M. El-Kemary, N. Nagy, I. El-Mehasseb, Mater. Sci. Semicond. Process. 16, 1747 (2013). https://doi.org/10.1016/j.mssp.2013.05.018

    Article  CAS  Google Scholar 

  31. S. Agrawal, A. Parveen, A. Azam, J. Lumin. 184, 250 (2017). https://doi.org/10.1016/j.jlumin.2016.12.035

    Article  CAS  Google Scholar 

  32. K. Varunkumar, R. Hussain, G. Hegde, A.S. Ethiraj, Mater. Sci. Semicond. Process. 66, 149 (2017)

    Article  CAS  Google Scholar 

  33. M.A. Marselin, N.V. Jaya, Int. J. ChemTech Res. 7, 2654 (2014)

    Google Scholar 

  34. H.T. Rahal, R. Awad, A.M. Abdel-Gaber, D. El-Said Bakeer, J. Nanomater. (2017). https://doi.org/10.1155/2017/7460323

    Article  Google Scholar 

  35. A.D. Khalaji, J. Clust. Sci. 24, 209 (2013). https://doi.org/10.1007/s10876-012-0540-5

    Article  CAS  Google Scholar 

  36. Z. Sabouri, N. Fereydouni, A. Akbari, H.A. Hosseini, A. Hashemzadeh, M.S. Amiri, R.K. Oskuee, M. Darroudi, Rare Met. 39, 1134 (2020). https://doi.org/10.1007/s12598-019-01333-z

    Article  CAS  Google Scholar 

  37. E.G. Goh, X. Xu, P.G. McCormick, Scr. Mater. 78, 49 (2014). https://doi.org/10.1016/j.scriptamat.2014.01.033

    Article  CAS  Google Scholar 

  38. R.K. Gupta, Z. Serbetc, F. Yakuphanoglu, J. Alloys Compd. 515, 96 (2012). https://doi.org/10.1016/j.jallcom.2011.11.098

    Article  CAS  Google Scholar 

  39. T. Taşköprü, F. Bayansal, B. Şahin, M. Zor, Philos. Mag. Lett. 95, 32 (2015). https://doi.org/10.1080/14786435.2014.984788

    Article  CAS  Google Scholar 

  40. J. Wang, L. Wei, L. Zhang, C. Jiang, E. Siu-Waikong, Y. Zhang, J. Mater. Chem. 22, 8327 (2012). https://doi.org/10.1039/C2JM16934G

    Article  CAS  Google Scholar 

  41. K. Baishya, J.S. Ray, P. Dutta, P.P. Das, S.K. Das, Appl. Phys. A. (2018). https://doi.org/10.1007/s00339-018-2097-0

    Article  Google Scholar 

  42. K.N. Patel, M.P. Deshpande, K. Chauhan, P. Rajput, V.P. Gujarati, S. Pandya, V. Sathe, S.H. Chaki, Adv. Powder Technol. 29, 2394 (2018). https://doi.org/10.1016/j.apt.2018.06.018

    Article  CAS  Google Scholar 

  43. G. Bharathy, P. Raji, J. Mater. Sci. 28, 17889 (2017). https://doi.org/10.1007/s10854-017-7730-8

    Article  CAS  Google Scholar 

Download references

Funding

There is no funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

MJ: Project Administration, Writing—Original Draft Preparation. KB: Methodology, Data curation. EP: Investigation, Conceptualization. ME, BAK, AM: Resources.

Corresponding author

Correspondence to M. Jothibas.

Ethics declarations

Conflict of interest

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jothibas, M., Bharanidharan, K., Paulson, E. et al. Effect of co-dopant proportion on the structural, optical and magnetic properties of pristine NiO nanoparticles synthesized by Sol–gel method. J Mater Sci: Mater Electron 33, 907–919 (2022). https://doi.org/10.1007/s10854-021-07361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07361-9

Navigation