Skip to main content
Log in

Effect of different nanostructures of Cu2ZnSnS4 on visible light-driven photocatalytic degradation of organic pollutants

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Surface-modified hydrophilic CZTS nanostructures have been successfully synthesized through hot injection method followed by bi-phase ligand exchange process. The as-synthesized CZTS nanoparticles (NPs) were characterized using the XRD, FTIR, TEM, BET, and UV–visible absorption spectroscopy. The morphology of the NPs has an important effect on the photocatalytic activity. CZTS NPs were synthesized with two different morphologies, i.e., nanospheres and nanoflakes. The photocatalytic degradation results indicate that the CZTS nanoflakes show more effective degradation of hazardous water pollutants, i.e., 98% degradation for methylene blue and 95% for rhodamine B within 80 min under 50-W LED visible light illumination. CZTS nanoflakes yield 60% degradation of industrial textile effluent under 50-W LED illumination. CZTS nanoflakes as catalyst effectively degrades the textile effluent under direct sunlight (average power density = 67 mW/cm2) illumination within 80 min. Further, the photo-degradation mechanism, photostability and recyclability of the catalysts were also analyzed. The results indicate that the hydroxyl and superoxide radicals play an important role in the organic pollutant degradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. S. Yao, S. Zhou, X. Zhou, J. Wang, X. Pu, Mater. Chem. Phys. 256, 123559 (2020)

    Article  CAS  Google Scholar 

  2. G. Sarigul, I. Gomez-palos, N. Linares, J. Garcia-Martinez, R.D. Costa, E. Serrano, J. Mater. Chem. C8, 12495–12508 (2020)

    Google Scholar 

  3. Q.I. Rahman, M. Ahmad, S.K. Misra, M. Lohani, Mater. Lett. 91, 170–174 (2013)

    Article  CAS  Google Scholar 

  4. S. Xie, Q. Zhang, G. Liu, Y. Wang, Chem. Commun. 52, 35–59 (2016)

    Article  CAS  Google Scholar 

  5. M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.-Q. Zhang, S.S. Al-Deyab, Y. Lai, J. Mater. Chem. A 4, 6772–6801 (2016)

    Article  CAS  Google Scholar 

  6. S.K. Leob, P.J.J. Alvarez, J.A. Brame, E.L. Cates, W. Choi, J. Crittenden, D.D. Dionysiou, Q. Li, G. Li-Puma, X. Quan, D.L. Sedlak, T.D. Waite, P. Westerhoff, J.-H. Kim, Environ. Sci. Technol. 53, 2937–2947 (2019)

    Article  Google Scholar 

  7. Q. Ren, W. Wang, H. Shi, Y. Liang, Micro Nano Lett. 9, 505–508 (2014)

    Article  Google Scholar 

  8. M.B. Zaman, R.A. Mir, R. Poolla, Int. J. Hydrogen Energy 44, 23023–23033 (2019)

    Article  Google Scholar 

  9. H. Guan, H. Shen, A. Raza, Catal. Lett. 147, 1844–1850 (2017)

    Article  CAS  Google Scholar 

  10. X. Yu, A. Shavel, X. An, Z. Luo, M. Ibanez, A. Cabot, J. Am. Chem. Soc. 136, 9236–9239 (2014)

    Article  CAS  Google Scholar 

  11. C. Imla Mary, M. Senthilkumar, G. Manobalaji, S. Moorthy Babu, J. Mater. Sci. Mater. Electron. 31, 18164–18174 (2020)

    Article  Google Scholar 

  12. C.I. Mary, M. Senthilkumar, S.M. Babu, Bull. Mater. Sci. 42(256), 1–6 (2019)

    CAS  Google Scholar 

  13. A. Ganai, P.S. Maiti, L. Houben, R. Bar-Ziv, M.B. Sandan, J. Phys. Chem. C 121, 7062–7068 (2017)

    Article  CAS  Google Scholar 

  14. L. Korala, M. Braun, J.M. Kephart, Z. Tregillus, A.L. Prieto, Chem. Mater. 29, 6621–6629 (2017)

    Article  CAS  Google Scholar 

  15. X. Nie, Y. Zhang, X. Wang, C. Ren, S.-Q. Gao, Y.-W. Lin, Chem. Select 3, 2267–2271 (2018)

    CAS  Google Scholar 

  16. A. Carrete, A. Shavel, X. Fontane, J. Montserrat, J. Fan, M. Ibanez, E. Saucedo, A.P. Rodriguez, A. Cabot, J. Am. Chem. Soc. 135, 15982–15985 (2013)

    Article  CAS  Google Scholar 

  17. K. Diwate, S. Rondia, A. Mayabadi, A. Rokade, R. Waykar, H. Borate, A. Funde, M. Shinde, M. B. R. Prasad, H. Pathan, S. Jadkar, J. Mater. Sci.: Mater. Electron. 29, 4940–4947 (2018)

  18. U. Holzwarth, N. Gibson, Nat. Nanotech. 6, 534 (2011)

    Article  CAS  Google Scholar 

  19. J. Wang, P. Zhang, X. Song, L. Gao, RSC Adv. 4, 27805–27810 (2014)

    Article  CAS  Google Scholar 

  20. S.K. Swami, N. Chaturvedi, A. Kumar, V. Dutta, Mater. Today Energy 9, 377–382 (2018)

    Article  Google Scholar 

  21. Q.-B. Wei, P. Xu, X.-P. Ren, F. Fu, J. Alloys Compd. 770, 424–432 (2019)

    Article  CAS  Google Scholar 

  22. J.G. Mahy, S.D. Lambert, R.G. Tilkin, C. Wolfs, D. Poelman, F. Devred, E.M. Gaigneaux, S. Douven, Mater. Today Energy 13, 312–322 (2019)

    Article  Google Scholar 

  23. S. Han, L. Hu, N. Gao, A.A. Al-Ghamdi, X. Fang, Adv. Funct. Mater. 24, 3725–3733 (2014)

    Article  CAS  Google Scholar 

  24. Y. Gao, F. Long, J. Wang, J. Zhang, S. Mo, Z. Zou, Mater. Des. 123, 24–31 (2017)

    Article  CAS  Google Scholar 

  25. Y. Guo, J. Wei, Y. Liu, T. Yang, Z. Xu, Nanoscale Res. Lett. 12, 181–187 (2017)

    Article  Google Scholar 

  26. Y. Li, B. Wang, S. Liu, X. Duan, Z. Hu, Appl. Surf. Sci. 324, 736–744 (2015)

    Article  CAS  Google Scholar 

  27. M. Shen, M.A. Henderson, J. Phys. Chem. Lett. 2(21), 2707–2710 (2011)

    Article  CAS  Google Scholar 

  28. D.-H. Kim, D. Lee, D. Monllor-Satoca, K. Kim, W. Lee, W. Choi, J. Hazard. Mater. 372, 121–128 (2019)

    Article  CAS  Google Scholar 

  29. J. Xiao, Y. Xie, J. Rabeah, A. Bruckner, H. Cao, Acc. Chem. Res. 53, 1024–1033 (2020)

    Article  CAS  Google Scholar 

  30. X.H. Lin, Y. Miao, S.F.Y. Li, Catal. Sci. Technol. 7, 441–451 (2017)

    Article  CAS  Google Scholar 

  31. D. Wang, Y. Duan, Q. Luo, X. Li, J. An, L. Bao, L. Shi, J. Mater. Chem. 22, 4847–4854 (2012)

    Article  CAS  Google Scholar 

  32. A. Houas, H. Lachhed, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Appl. Catal. B 31, 145–157 (2001)

    Article  CAS  Google Scholar 

  33. S. Adhikari, A.V. Charanpahari, G. Madras, ACS Omega 12, 6926–6938 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank DRDO (ERIP/ER/201808007/M/01/1740) for funding the research project. One of the authors M. Sai Prasanna, sincerely thank Anna University for providing research fellowship through ACRF scheme.

Funding

This study was funded by defence research and development organisation (ERIP/ER/201808007/M/01/1740).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Moorthy Babu.

Ethics declarations

Conflict of interest

The authors have to declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imla Mary, C., Senthilkumar, M., Manobalaji, G. et al. Effect of different nanostructures of Cu2ZnSnS4 on visible light-driven photocatalytic degradation of organic pollutants. J Mater Sci: Mater Electron 33, 894–906 (2022). https://doi.org/10.1007/s10854-021-07359-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07359-3

Navigation