Skip to main content
Log in

Magnetic properties and electrocatalytic properties of Fe5C2 particles with different morphologies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fe5C2 particle is a promising magnetic material, but there are few reports on pure phase Fe5C2 particle with adjustable morphology. Herein, pure phase Fe5C2 magnetic materials with different morphologies were prepared by a simple ethylenediamine carbonization method. This method included the preparation of FeC2O4·2H2O precursors with different morphologies and the co-calcination process of ethylenediamine and the precursors. At the same time, the optimum experimental conditions for the formation of pure phase Fe5C2 particles with different morphologies were investigated. More importantly, the magnetic properties of Fe5C2 particles and the electrocatalytic activities of Fe5C2 particles as electrocatalysts for the hydrogen evolution reaction (HER) are improved by adjusting the morphologies of Fe5C2 particles. The saturation magnetization (Ms) and coercivity (Hc) of Fe5C2 particle with the cuboid rod-like structure can reach 134.53 emu/g and 305.93 Oe, respectively, demonstrating good soft magnetic properties at 298 K. Simultaneously, the Fe5C2 particle with the porous cuboid rod-like structure exhibits efficient HER activity (225 mV for j = − 10 mA cm−2). In this work, a simple and generalized Fe5C2 particle synthesis method is proposed, and new explorations are provided for the further applications of Fe5C2 particles with different morphologies in the fields of magnetism and catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Zhu, Y. Ju, J. Xu, Z. Yang, S. Gao, Y. Hou, Magnetic nanomaterials: chemical design, synthesis, and potential applications. Acc. Chem. Res. 51(2), 404–413 (2018)

    Article  CAS  Google Scholar 

  2. X. Wang, K. Zhu, Y. Ju, Y. Li, W. Li, J. Xu, Y. Hou, Iron carbides: magic materials with magnetic and catalytic properties. J. Magn. Magn. Mater. 489, 165432 (2019)

    Article  CAS  Google Scholar 

  3. Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, H.J. Fan, Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3(5), 1500286 (2016)

    Article  Google Scholar 

  4. Y. Tian, L. Xu, J. Qian, J. Bao, C. Yan, H. Li, H. Li, S. Zhang, Fe3C/Fe2O3 heterostructure embedded in N-doped graphene as a bifunctional catalyst for quasi-solid-state zinceair batteries. Carbon 146, 763–771 (2019)

    Article  CAS  Google Scholar 

  5. Z. Ye, P. Zhang, X. Lei, X. Wang, N. Zhao, H. Yang, Iron Carbides and Nitrides: Ancient Materials with Novel Prospects. Chemistry 24(36), 8922–8940 (2018)

    Article  CAS  Google Scholar 

  6. W. Tang, Z. Zhen, C. Yang, L. Wang, T. Cowger, H. Chen, T. Todd, K. Hekmatyar, Q. Zhao, Y. Hou, J. Xie, Fe5C2 nanoparticles with High MRI contrast enhancement for tumor imaging. Small 10, 1245–1249 (2014)

    Article  CAS  Google Scholar 

  7. J. Yu, C. Yang, J. Li, Y. Ding, L. Zhang, M.Z. Yousaf, J. Lin, R. Pang, L. Wei, L. Xu, F. Sheng, C. Li, G. Li, L. Zhao, Y. Hou, Multifunctional Fe5C2 nanoparticles: a targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv. Mater 26, 4114–4120 (2014)

    Article  CAS  Google Scholar 

  8. J. Yu, Y. Ju, L. Zhao, X. Chu, W. Yang, Y. Tian, F. Sheng, J. Lin, F. Liu, Y. Dong, Y. Hou, Multistimuli-regulated photochemothermal cancer therapy remotely controlled via Fe5C2 nanoparticles. ACS Nano 10, 159–169 (2016)

    Article  CAS  Google Scholar 

  9. H. Liang, H. Xing, Z. Ma, H. Wu, Tailoring high-electroconductivity carbon cloth coated by nickel cobaltate/nickel oxide: a case of transition from microwave shielding to absorption. Carbon 183, 138–149 (2021)

    Article  CAS  Google Scholar 

  10. T. Hou, B. Wang, Z. Jia, H. Wu, D. Lan, Z. Huang, A. Feng, M. Ma, G. Wu, A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective. J. Mater. Sci.: Mater. Electron. 30(12), 10961–10984 (2019)

    CAS  Google Scholar 

  11. X. Li, M. Li, X. Lu, W. Zhu, H. Xu, J. Xue, F. Ye, Y. Liu, X. Fan, L. Cheng, A sheath-core shaped ZrO2-SiC/SiO2 fiber felt with continuously distributed SiC for broad-band electromagnetic absorption. Chem. Eng. J. 419, 129414 (2021)

    Article  CAS  Google Scholar 

  12. M. Li, X. Fan, H. Xu, F. Ye, J. Xue, X. Li, L. Cheng, Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance. J. Mater. Sci. Technol. 59, 164–172 (2020)

    Article  Google Scholar 

  13. M. Zhu, X. Yan, H. Xu, Y. Xu, L. Kong, Highly conductive and flexible bilayered MXene/cellulose paper sheet for efficient electromagnetic interference shielding applications. Ceram. Int. 47(12), 17234–17244 (2021)

    Article  CAS  Google Scholar 

  14. O. Malina, P. Jakubec, J. Kaslik, J. Tucek, R. Zboril, A simple high-yield synthesis of high-purity Hägg carbide (χ-Fe5C2) nanoparticles with extraordinary electrochemical properties. Nanoscale 9, 10440–10446 (2017)

    Article  CAS  Google Scholar 

  15. S. Yao, C. Yang, H. Zhao, S. Li, L. Lin, W. Wen, J. Liu, G. Hu, W. Li, Y. Hou, D. Ma, Reconstruction of the wet chemical synthesis process: the case of Fe5C2 nanoparticles. J. Phys. Chem. C 121, 5154–5160 (2017)

    Article  CAS  Google Scholar 

  16. C. Yang, H. Zhao, Y. Hou, D. Ma, Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis. J. Am. Chem. Soc. 134, 15814–15821 (2012)

    Article  CAS  Google Scholar 

  17. S. Li, P. Ren, C. Yang, X. Liu, Z. Yin, W. Li, H. Yang, J. Li, X. Wang, Y. Wang, R. Cao, L. Lin, S. Yao, X. Wen, D. Ma, Fe5C2 nanoparticles as low-cost HER electrocatalyst: the importance of Co substitution. Sci. Bull. 63, 1358–1363 (2018)

    Article  CAS  Google Scholar 

  18. X. Fan, Z. Peng, R. Ye, H. Zhou, X. Guo, M3C (M: Fe Co, Ni) nanocrystals encased in graphene nanoribbons: an active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reaction. ACS Nano 9, 7407–7418 (2015)

    Article  CAS  Google Scholar 

  19. Z. Wen, S. Ci, F. Zhang, X. Feng, S. Cui, S. Mao, S. Luo, Z. He, J. Chen, Nitrogen-enriched core-shell structured Fe/Fe3C-C nanorods as advanced electrocatalysts for oxygen reduction reaction. Adv. Mater. 24, 1399–1404 (2012)

    Article  CAS  Google Scholar 

  20. Z. Jia, D. Ren, L. Xu, Generalized preparation of metal oxalate nano/submicro-rods by facile solvothermal method and their calcined products. Mater. Lett. 76, 194–197 (2012)

    Article  CAS  Google Scholar 

  21. Z. Ye, Y. Qie, Z. Fan, Y. Liu, Z. Shi, H. Yang, Soft magnetic Fe5C2-Fe3C@C as an electrocatalyst for the hydrogen evolution reaction. Dalton Trans. 48, 4636–4642 (2019)

    Article  CAS  Google Scholar 

  22. Z. Yang, T. Zhao, X. Huang, X. Chu, T. Tang, Y. Ju, Q. Wang, Y. Hou, S. Gao, Modulating the phases of iron carbide nanoparticles: from a perspective of interfering with the carbon penetration of Fe@Fe3O4 by selectively adsorbed halide ions. Chem. Sci. 8, 473–481 (2017)

    Article  CAS  Google Scholar 

  23. P. Zhao, W. Xu, X. Hua, W. Luo, S. Chen, G. Cheng, Facile synthesis of a N-doped Fe3C@CNT/porous carbon hybrid for an advanced oxygen reduction and water oxidation electrocatalyst. J. Phys. Chem. C 120, 11006–11013 (2016)

    Article  CAS  Google Scholar 

  24. C. Song, S. Wu, X. Shen, X. Miao, Z. Ji, A. Yuan, K. Xu, M. Liu, X. Xie, L. Kong, G. Zhu, S. Ali Shah, Metal-organic framework derived Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions. J. Colloid Interface Sci. 524, 93–101 (2018)

    Article  CAS  Google Scholar 

  25. C. Yang, Y.L. Hou, S. Gao, Nanomagnetism: principles, nanostructures, and biomedical applications. Chin. Phys. B 23(5), 057505 (2014)

    Article  Google Scholar 

  26. W. Ge, W. Gao, J. Zhu, Y. Li, In situ synthesis of Hagg iron carbide (Fe5C2) nanoparticles with a high coercivity and saturation magnetization. J. Alloy. Compd. 781, 1069–1073 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (CN) (No. 51872111) and Natural Science Foundation of Jilin Province (No.20190201253JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, F., Qie, Y., Liu, Y. et al. Magnetic properties and electrocatalytic properties of Fe5C2 particles with different morphologies. J Mater Sci: Mater Electron 33, 884–893 (2022). https://doi.org/10.1007/s10854-021-07358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07358-4

Navigation