Skip to main content
Log in

Fractures of ultra-low-k material in a chip during a flip-chip process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The low-k/ultra-low-k (LK/ULK) dielectric materials are incorporated in the 40 nm technology node and beyond to reduce resistance and capacitance (RC) delays and improve chip performances. However, the LK/ULK integrity becomes critical in a flip-chip process because of the LK/ULK materials' higher porosity and fragility in mechanics. In this paper, we proposed a three-dimensional (3D) one-level global/local finite element model to study stresses and fracture behaviors in the chip with ULK dielectrics in the heating flip-chip process using SIMULIA ABAQUS software. The global model includes an effective thin layer that is equivalent to Cu/low-k multilayer interconnections. On the basis of stress analysis, the precracks at different locations of back-end of line (BEOL) were introduced to estimate the values of energy release rate (ERR) along the 3D crack fronts and the possible crack extension was discussed. Furthermore, the ERR affected by the ULK modulus, polyimide thickness and copper pillar diameter was investigated. The analysis reveals that the values of ERR are higher in upper layers of the BEOL and their values at interfaces of Cu/ULK are as much as two times than in ULK. The ERR reaches its maximum value under the edge of copper pillar with higher first principal stresses. The crack propagation becomes critical due to a quickly rising value of ERR when the polyimide (PI) thickness or the diameter of copper pillar is decreased. The study helps to understand the fracture behaviors in BEOL of an advanced chip during a packaging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Morgen, E.T. Ryan, J.-H. Zhao, C. Hu, T. Cho, P.S. Ho, Annu. Rev. Mater. Sci. 30, 645 (2000)

    Article  CAS  Google Scholar 

  2. J. Heidenreich, D. Edelstein, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, T. McDevitt, A. Stamper, A. Simon, J. Dukovic, P. Andricacos, R. Wachnik, H. Rathore, T. Katsetos, P. McLaughlin, S. Luce, and J. Slattery, In: Proceedings of the IEEE 1998 International Interconnect Technology Conference (Cat. No.98EX102) (IEEE, San Francisco, CA, USA, 1998), pp. 151–153.

  3. K.N. Tu, Microelectron. Reliab. 51, 517 (2011)

    Article  CAS  Google Scholar 

  4. J. Auersperg, D. Vogel, M. U. Lehr, M. Grillberger, and B. Michel, In: Electronics packaging technology conference, 2009. EPTC ’09. 11th (2009), pp. 596–599.

  5. G. Wang, C. Merrill, J.-H. Zhao, S.K. Groothuis, P.S. Ho, IEEE Trans. Device Mater. Reliab. 3, 119 (2003)

    Article  CAS  Google Scholar 

  6. G. Wang, P.S. Ho, S. Groothuis, Microelectron. Reliab. 45, 1079 (2005)

    Article  CAS  Google Scholar 

  7. P.S. Ho, G. Wang, M. Ding, J.-H. Zhao, X. Dai, Microelectron. Reliab. 44, 719 (2004)

    Article  Google Scholar 

  8. W. Wang, Y. Sun, X. Zhang, L. Wang, L. Zhao, M. Schwarz, B. Stone, and A. Syed, In: 2019 IEEE 69th electronic components and technology conference (ECTC) (2019), pp. 392–396.

  9. K. Vanstreels, H. Zahedmanesh, M. Gonzalez, Microelectron. Reliab. 112, 113825 (2020)

    Article  CAS  Google Scholar 

  10. J. Silomon, J. Gluch, J. Posseckardt, A. Clausner, J. Paul, D. Breuer, and E. Zschech, In: 2021 IEEE international interconnect technology conference (IITC) (IEEE, Kyoto, Japan, 2021), pp. 1–3.

  11. Z. Xuefeng, Device and materials reliability. IEEE Trans Device Mater Reliab 12, 462 (2012)

    Article  Google Scholar 

  12. C.G. Song, H.S. Jung, E. Sohn, D. Kang, J. Kim, J. Yoon, C. Lee, S.-H. Choa, Nanosci Nanotechnol Lett 8, 1 (2016)

    Article  CAS  Google Scholar 

  13. Guotao Wang, S. Groothuis, C. Merrill, and P. S. Ho, in The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543) (IEEE, Las Vegas, NV, USA, 2004), pp. 211–218.

  14. L. Mercado, C. Goldberg, and S.-M. Kuo, in Proceedings of the IEEE 2002 International Interconnect Technology Conference (Cat. No. 02EX519) (IEEE, Burlingame, CA, USA, 2002), pp. 119–121.

  15. L.L. Mercado, C. Goldberg, S.M. Koo, T.Y.T. Lee, S. Pozer, IEEE Trans Device Mater Reliab 3, 111 (2003)

    Article  CAS  Google Scholar 

  16. K. Vanstreels, C. Wu, M.R. Baklanov, ECS J. Solid State Sci. Technol. 4, N3058 (2015)

    Article  CAS  Google Scholar 

  17. S. Bailey, E. Mays, D.J. Michalak, R. Chebiam, S. King, R. Sooryakumar, J. Phys. D: Appl. Phys. 46, 045308 (2013)

    Article  Google Scholar 

  18. K. Vanstreels, C. Wu, P. Verdonck, M.R. Baklanov, Appl. Phys. Lett. 101, 123109 (2012)

    Article  Google Scholar 

  19. C. Jin, S. Lin, J.T. Wetzel, J. Electron. Mater. 30, 284 (2001)

    Article  CAS  Google Scholar 

  20. A. Delan, M. Rennau, S.E. Schulz, T. Gessner, Microelectron. Eng. 70, 280 (2003)

    Article  CAS  Google Scholar 

  21. K. V. Machani, F. Kuechenmeister, D. Breuer, and J. Paul, In: 2020 21st International conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (EuroSimE) (IEEE, Cracow, Poland, 2020), pp. 1–4.

  22. K. V. Machani, F. Kuechenmeister, D. Breuer, C. Klewer, J. K. Cho, and K. Young-Fisher, In: 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) (IEEE, Orlando, FL, USA, 2020), pp. 1100–1105.

  23. W. Chu, T. Jiang, P.S. Ho, IEEE Trans. Device Mater. Reliab. 21, 290 (2021)

    Article  Google Scholar 

  24. M. S. Lee, I. Baick, M. Kim, S. H. Kwon, M. S. Yeo, H. Rhee, and E. Lee, In: 2021 IEEE International Reliability Physics Symposium (IRPS) (IEEE, Monterey, CA, USA, 2021), pp. 1–6.

  25. L. Lin, J. Wang, L. Wang, W. Zhang, Microelectron. Reliab. 65, 198 (2016)

    Article  CAS  Google Scholar 

  26. A.A. Volinsky, J.B. Vella, W.W. Gerberich, Thin Solid Films 429, 201 (2003)

    Article  CAS  Google Scholar 

  27. M.L. Williams, Bull. Seismol. Soc. Am. 49, 199 (1959)

    Article  Google Scholar 

  28. J.R. Rice, J. Appl. Mech 55, 98 (1988)

    Article  Google Scholar 

  29. Z. Suo, J.W. Hutchinson, Int. J. Fract. 43, 1 (1990)

    Article  Google Scholar 

  30. J. Auersperg, R. Dudek, S. Rzepka, and B. Michel, In: Electronics Packaging Technology Conference (EPTC 2013), 2013 IEEE 15th (2013), pp. 455–460.

  31. Dassault Systèmes Simulia Corp., Simulia ABAQUS Theory Manual Version 6.11 (DSS, Providence, RI, USA, 2011).

  32. J.B. Vella, I.S. Adhihetty, K. Junker, A.A. Volinsky, Int. J. Fract. 120, 487 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports of National Nature Science Foundation of China (No. 61774044) and National Science and Technology Major Project of China (No. 2017ZX02315005) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Wang, L. & Wang, J. Fractures of ultra-low-k material in a chip during a flip-chip process. J Mater Sci: Mater Electron 33, 789–799 (2022). https://doi.org/10.1007/s10854-021-07349-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07349-5

Navigation