Skip to main content
Log in

Microstructure, morphology, and dielectric properties of in situ synthesized CCTO/CTO/TiO2 composite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CaCu3Ti4O12/CaTiO3/TiO2 (CCTO/CTO/TiO2) composite ceramics were fabricated by an in situ route and sintered at 1040 °C for 8 h. The micrographs of FESEM show that the ceramics are dense and delicate, with an average particle size of about 0.9–1.4 μm. XPS found the existence of Cu+ and Ti3+, which was caused by the charge compensation reaction derived from part of Ti4+ ions entering the VCu to form the donor \({{\rm {Ti}}^{\cdot\cdot}}_{\rm {Cu}}\). The impedance analysis shows that excessive CTO and TiO2 significantly reduce the grain boundary resistance of CCTO/CTO/TiO2 ceramics. Furthermore, it can be found that due to excessive CTO, TiO2 reacts with segregated CuO to form CCTO again and reduce the CuO concentration at the grain boundaries. Therefore, this significantly reduces the grain boundary width, resulting in a colossal dielectric constant of 9.0 × 105 at 30 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Mao, J. Wang, P. Xiao, L. Zhang, F. Kang, H. Gong, Colossal dielectric response and relaxation behavior in novel system of Zr4+ and Nb5+ co-substituted CaCu3Ti4O12 ceramics. Ceram. Int. 47, 111–120 (2021)

    Article  CAS  Google Scholar 

  2. J.A. Cortés, H. Moreno, S. Orrego, V.D.N. Bezzon, M.A. Ramírez, Dielectric and non-ohmic analysis of Sr2+ influences on CaCu3Ti4O12-based ceramic composites, Materials Research Bulletin, 134 (2021)

  3. P. Mao, J. Wang, S. Liu, L. Zhang, Y. Zhao, L. He, Grain size effect on the dielectric and non-ohmic properties of CaCu3Ti4O12 ceramics prepared by the sol-gel process. J. Alloy. Compd. 778, 625–632 (2019)

    Article  CAS  Google Scholar 

  4. J. Zhao, J. Liu, G. Ma, Preparation, characterization and dielectric properties of CaCu3Ti4O12 ceramics. Ceram. Int. 38, 1221–1225 (2012)

    Article  CAS  Google Scholar 

  5. L.F. Xu, K. Sun, X. Feng, H.B. Xiao, R.L. Wang, C.P. Yang, Abnormal capacitance–voltage behaviors of bismuth-doped CaCu3Ti4O12 ceramics. Int. J. Modern Phys. B, 31 (2017)

  6. X.W. Wang, P.B. Jia, L.Y. Sun, B.H. Zhang, X.E. Wang, Y.C. Hu, J. Shang, Y.Y. Zhang, Improved dielectric properties in CaCu3Ti4O12 ceramics modified by TiO2. J. Mater. Sci.: Mater. Electron. 29, 2244–2250 (2017)

    Google Scholar 

  7. J. Zhao, H. Zhao, Z. Zhu, Influence of sintering conditions and CuO loss on dielectric properties of CaCu3Ti4O12 ceramics. Mater. Res. Bull. 113, 97–101 (2019)

    Article  CAS  Google Scholar 

  8. J. Yang, M. Shen, L. Fang, The electrode/sample contact effects on the dielectric properties of the CaCu3Ti4O12 ceramic. Mater. Lett. 59, 3990–3993 (2005)

    Article  CAS  Google Scholar 

  9. C.C. Calvert, W.M. Rainforth, D.C. Sinclair, A.R. West, EELS characterization of bulk CaCu3Ti4O12 ceramics. Micron 37, 412–419 (2006)

    Article  CAS  Google Scholar 

  10. Z. Kafi, A. Kompany, H. Arabi, A. Khorsand Zak, The effect of cobalt-doping on microstructure and dielectric properties of CaCu3Ti4O12 ceramics. J. Alloys Compd. 727, 168–176 (2017)

    Article  CAS  Google Scholar 

  11. S. Orrego, J.A. Cortés, R.A.C. Amoresi, A.Z. Simões, M.A. Ramírez, Photoluminescence behavior on Sr2+ modified CaCu3Ti4O12 based ceramics. Ceram. Int. 44, 10781–10789 (2018)

    Article  CAS  Google Scholar 

  12. M.K. Pradhan, T.L. Rao, L. Karna, S. Dash, Giant dielectric response in (Sr, Sb) codoped CaCu3Ti4O12 ceramics: a novel approach (2018)

  13. A. Skwarek, R.P. Socha, D. Szwagierczak, P. Zachariasz, Investigation of the microstructure and chemical composition of CaCu3Ti4O12 multilayer elements using SEM, EDS, and XPS. Acta Phys. Pol., A 134, 318–321 (2018)

    Article  CAS  Google Scholar 

  14. L. Zhao, R. Xu, Y. Wei, X. Han, C. Zhai, Z. Zhang, X. Qi, B. Cui, J.L. Jones, Giant dielectric phenomenon of Ba0.5Sr0.5TiO3/CaCu3Ti4O12 multilayers due to interfacial polarization for capacitor applications. J. Eur. Ceramic Soc. 39, 1116–1121 (2019)

    Article  CAS  Google Scholar 

  15. R. Djafar, K. Boumchedda, A. Chaouchi, D. Fasquelle, K. Sedda, S. Brahimi, K. Khalfaoui, M. Bououdina, CuO addition and sintering temperature dependence of structural, microstructural and dielectric properties of CaCu3Ti4O12 ceramics. Mater. Chem. Phys. 256 (2020)

  16. H. Moreno, J.A. Cortés, F.M. Praxedes, S.M. Freitas, M.V.S. Rezende, A.Z. Simões, V.C. Teixeira, M.A. Ramirez, Tunable photoluminescence of CaCu3Ti4O12 based ceramics modified with tungsten. J. Alloys Compd. 850 (2021).

  17. P. Fiorenza, R. Lo Nigro, A. Sciuto, P. Delugas, V. Raineri, R.G. Toro, M.R. Catalano, G. Malandrino, Perovskite CaCu3Ti4O12 thin films for capacitive applications: From the growth to the nanoscopic imaging of the permittivity. J. Appl. Phys. 105 (2009).

  18. C. Mu, H. Zhang, Y. Liu, Y. Song, P. Liu, Rare earth doped CaCu3Ti4O12 electronic ceramics for high frequency applications. J. Rare Earths 28, 43–47 (2010)

    Article  CAS  Google Scholar 

  19. J.-W. Lee, J.-H. Koh, Grain size effects on the dielectric properties of CaCu3Ti4O12 ceramics for supercapacitor applications. Ceram. Int. 41, 10442–10447 (2015)

    Article  CAS  Google Scholar 

  20. D.S. Saidina, A. Norshamira, M. Mariatti, Dielectric and thermal properties of CCTO/epoxy composites for embedded capacitor applications: mixing and fabrication methods. J. Mater. Sci.: Mater. Electron. 26, 8118–8129 (2015)

    CAS  Google Scholar 

  21. S. Kaur, A. Kumar, A.L. Sharma, D.P. Singh, Dielectric and energy storage behavior of CaCu3Ti4O12 nanoparticles for capacitor application. Ceram. Int. 45, 7743–7747 (2019)

    Article  CAS  Google Scholar 

  22. L. Zhang, F. Song, X. Lin, D. Wang, High-dielectric-permittivity silicone rubbers incorporated with polydopamine-modified ceramics and their potential application as dielectric elastomer generator. Mater. Chem. Phys. 241 (2020)

  23. X. Yue, W. Long, J. Liu, S. Pandey, S. Zhong, L. Zhang, S. Du, D. Xu, Enhancement of dielectric and non-ohmic properties of graded Co doped CaCu3Ti4O12 thin films. J. Alloys Compd. 816 (2020)

  24. G. Wu, Z. Yu, K. Sun, R. Guo, X. Jiang, C. Wu, Z. Lan, Effect of CaCu3Ti4O12 dopant on the magnetic and dielectric properties of high-frequency MnZn power ferrites. J. Magnet. Magnet. Mater. 513 (2020)

  25. P. Mao, J. Wang, L. Zhang, Z. Wang, F. Kang, S. Liu, D.B.K. Lim, X. Wang, H. Gong, Significantly enhanced breakdown field with high grain boundary resistance and dielectric response in 0.1Na0.5Bi0.5TiO30.9BaTiO3 doped CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 40, 3011–3018 (2020)

    Article  CAS  Google Scholar 

  26. M.M. Ahmad, Giant dielectric constant in CaCu3Ti4O12 nanoceramics. Appl. Phys. Lett. 102 (2013)

  27. W.C. Ribeiro, E. Joanni, R. Savu, P.R. Bueno, Nanoscale effects and polaronic relaxation in CaCu3Ti4O12 compounds. Solid State Commun. 151, 173–176 (2011)

    Article  CAS  Google Scholar 

  28. P.R. Bueno, R. Tararan, R. Parra, E. Joanni, M.A. Ramírez, W.C. Ribeiro, E. Longo, J.A. Varela, A polaronic stacking fault defect model for CaCu3Ti4O12material: an approach for the origin of the huge dielectric constant and semiconducting coexistent features. J. Phys. D Appl. Phys. 42 (2009)

  29. C.C. Wang, L.W. Zhang, Surface-layer effect in CaCu3Ti4O12. Appl. Phys. Lett. 88 (2006)

  30. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153–2155 (2002)

    Article  CAS  Google Scholar 

  31. P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Nonintrinsic origin of the colossal dielectric constants in CaCu3Ti4O12. Phys. Rev. B 70 (2004)

  32. H. Lin, W. Xu, H. Zhang, C. Chen, Y. Zhou, Z. Yi, Origin of high dielectric performance in fine grain-sized CaCu3Ti4O12 materials. J. Eur. Ceram. Soc. 40, 1957–1966 (2020)

    Article  CAS  Google Scholar 

  33. Y. Wang, L. Ni, X.M. Chen, Effects of Nd-substitution on microstructures and dielectric characteristics of CaCu3Ti4O12 ceramics. J. Mater. Sci.: Mater. Electron. 22, 345–350 (2010)

    Google Scholar 

  34. L. Ni, X.M. Chen, Enhanced giant dielectric response in Mg-substituted CaCu3Ti4O12 ceramics. Solid State Commun. 149, 379–383 (2009)

    Article  CAS  Google Scholar 

  35. D. Xu, K. He, R. Yu, X. Sun, Y. Yang, H. Xu, H. Yuan, J. Ma, High dielectric permittivity and low dielectric loss in sol–gel derived Zn doped CaCu3Ti4O12 thin films. Mater. Chem. Phys. 153, 229–235 (2015)

    Article  CAS  Google Scholar 

  36. Y. Su, W. Zhang, Dielectric properties and electrical conductivity of CaCu3Ti4O12 ceramics doped with Zr4+. J. Wuhan Univ. Technol-Mater. Sci. Ed. 28, 343–346 (2013)

    Article  CAS  Google Scholar 

  37. M.F.A. Rahman, M.J. Abu, S.A. Karim, R.A. Zaman, M.F. Ain, Z.A. Ahmad, J.J. Mohamed, Microwave dielectric properties of CaCu3Ti4O12-Al2O3 composite (2016)

  38. B. Ghosh, R.M. Tamayo Calderón, R. Espinoza-González, S.A. Hevia, Enhanced dielectric properties of PVDF/CaCu3Ti4O12: Ag composite films. Mater. Chem. Phys. 196, 302–309 (2017)

    Article  CAS  Google Scholar 

  39. J. Wang, Y. Long, Y. Sun, X. Zhang, H. Yang, B. Lin, Fabrication and enhanced dielectric properties of polyimide matrix composites with core–shell structured CaCu3Ti4O12@TiO2 nanofibers. J. Mater. Sci.: Mater. Electron. 29, 7842–7850 (2018)

    CAS  Google Scholar 

  40. A. Rajabtabar-Darvishi, R. Bayati, O. Sheikhnejad-Bishe, L.D. Wang, W.L. Li, J. Sheng, W.D. Fei, Giant dielectric response and low dielectric loss in Al2O3 grafted CaCu3Ti4O12 ceramics. J. Appl. Phys. 117 (2015).

  41. J. Li, R. Jia, L. Hou, L. Gao, K. Wu, S. Li, The dimensional effect of dielectric performance in CaCu3Ti4O12 ceramics: Role of grain boundary. J. Alloy. Compd. 644, 824–829 (2015)

    Article  CAS  Google Scholar 

  42. P. Liu, Y. Lai, Y. Zeng, S. Wu, Z. Huang, J. Han, Influence of sintering conditions on microstructure and electrical properties of CaCu3Ti4O12 (CCTO) ceramics. J. Alloy. Compd. 650, 59–64 (2015)

    Article  CAS  Google Scholar 

  43. M.J. Abu, J.J. Mohamed, M.F. Ain, Z.A. Ahmad, Phase structure, microstructure and broadband dielectric response of Cu nonstoichiometry CaCu3Ti4O12 ceramic. J. Alloy. Compd. 683, 579–589 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (51562037) and Yunnan University Graduate Research and Innovation Fund (2020Z41). The authors thank Advanced Analysis and Measurement Center of Yunnan University for the sample testing service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingchang Zhao.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Tan, J. & Zhao, J. Microstructure, morphology, and dielectric properties of in situ synthesized CCTO/CTO/TiO2 composite ceramics. J Mater Sci: Mater Electron 33, 1807–1816 (2022). https://doi.org/10.1007/s10854-021-07346-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07346-8

Navigation