Skip to main content
Log in

Tuning photocatalytic activity and magnetic behavior of Bi0.8Re0.2FeO3(Re = Nd, Sm) multiferroics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

For the investigation of the exchange bias effect and magneto-optical properties of Bi0.8Re0.2(Re = Nd and Sm)FeO3 (BNFO and BSFO) nanofibers were synthesized via the electrospinning technique. The crystal structure was changed from rhombohedral phases of space group R3c before undoping shift to orthorhombic phases of space group Pbam and Pnma after doping of Nd3+ and Sm3+ ions, respectively, by the Rietveld refinement results. Analysis of the magnetic hysteresis loops demonstrated that the remanent magnetization especially coercivity of BNFO and BSFO nanofibers at 10 K and 300 K exhibited obviously variation, which was attributed to the lower temperature suppressed the fluctuation of magneto-caloric and valence state. The XPS and EDS results displayed the Nd3+ and Sm3+ ions were successfully doped into BFO nanofibers. Meanwhile, the lattice distortion

induced the suppression of antiferromagnetic ordered spin modulation, which played an important role to enhance the magnetic properties. It was observed that the exchange bias effect (HEB) of BNFO nanofibers was higher than those of BSFO nanofibers. UV–vis spectra measurements revealed the band gap of BNFO and BSFO nanofibers was 1.87 eV and 1.85 eV, respectively, and the absorption edges of BSFO nanofibers occurred a slightly red shift. The MO degradation rates of BNFO and BSFO nanofibers reached about 89.4% and 78.6%, respectively, which could be a potential candidate in photo-electron devices and the semiconductor industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.F. Wang, J.M. Liu, Z.F. Ren, Adv. Phys. 58, 321 (2009). https://doi.org/10.1080/00018730902920554

    Article  CAS  Google Scholar 

  2. C.W. Nan, M. I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 0311 (2008).https://doi.org/10.1063/1.2836410.

  3. F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, J.M. Liu, Z.F. Ren, Appl. Phys. Lett. 89, 102506 (2006). https://doi.org/10.1063/1.2345825

    Article  CAS  Google Scholar 

  4. J.P. Zhou, Z.C. Qiu, P. Liu, W.C. Sun, H.W. Zhang, J. Appl. Phys. 103, 103522 (2008). https://doi.org/10.1063/1.2927471

    Article  CAS  Google Scholar 

  5. J. Wu, J. Wang, J. Alloys. Compd. 507, L4 (2010). https://doi.org/10.1016/j.jallcom.2010.07.134

    Article  CAS  Google Scholar 

  6. Y. Zhang, Y. Yang, Z. Dong et al., J. Mater. Sci: Mater Electron. 31, 15007 (2020). https://doi.org/10.1007/s10854-020-04064-5M

    Article  CAS  Google Scholar 

  7. M. Rashad, J. Mater. Sci. 23, 882 (2012). https://doi.org/10.1007/s10854-011-0513-8

    Article  CAS  Google Scholar 

  8. X.L. Liu, M.Y. Li, J. Wang et al., Appl. Phys. A-Mater 108, 829 (2012). https://doi.org/10.1007/s00339-012-6976-5

    Article  CAS  Google Scholar 

  9. Pattanayak, S., Choudhary, R. N. P. & Das, P.R. Electron. Mater. Lett. 10, (2014) 165–172. http://xwfwlib.lut.cn:80/rwt/SL/https/MSYXTLUQPJUB/https://doi.org/10.1007/s13391-013-3050-1.

  10. J.C. Yang, Q. He, P. Yu et al., Annu. Rev. Mater. Res. 45, 150203 (2015). https://doi.org/10.1146/annurev-matsci-070214-020837

    Article  CAS  Google Scholar 

  11. J. Wei, D.S. Xue, Y. Xu, Scripta Mater. 58, 45 (2008). https://doi.org/10.1016/j.scriptamat.2007.09.001

    Article  CAS  Google Scholar 

  12. D. Daranciang, M. Highland, H. Wen et al., Phys. Rev. Lett. 108, 087601 (2012). https://doi.org/10.1103/PhysRevLett.108.087601

    Article  CAS  Google Scholar 

  13. S. Dzyaloshinskii, Phys. JETP. 10, 628 (1960)

    Google Scholar 

  14. F. Pedro-García, F. S` anchez-De Jesús, J. Alloys Compd. (2017). Doi: https://doi.org/10.1016/j.jallcom.2017.03.292.

  15. J.N. Ding, M.J. Chen, J.H. Qiu et al., Science. China 58, 1 (2015). https://doi.org/10.1007/s11433-014-5552-8

    Article  CAS  Google Scholar 

  16. L.M. Campos, A. Tontcheva, S. Günes, G et al. Chem. Mater. 17, 4031 (2005). https://doi.org/10.1021/cm050463+

    Article  CAS  Google Scholar 

  17. V.M. Fridkin, Photoferroelectrics, Solid-State Sciences, vol. 9 (Springer, NewYork, 1979)

    Google Scholar 

  18. G. Tong, C. Zhi, Y. Zhu et al., Mate. Res. Bulletin 59, 6 (2014). https://doi.org/10.1016/j.materresbull.2014.06.022

    Article  CAS  Google Scholar 

  19. M. Ichiki, Y. Morikawa, T. Nakada. Jpn. J, Appl. Phys. 41, 6993 (2002) .

  20. M. Tyagi, R. Chatterjee, P.J. Sharma, Mater. Sci: Mater. Electron. 26, 1987 (2015)

    CAS  Google Scholar 

  21. M. Qin, K. Yao, Y.C. Liang, S. Shannigrahi, J. Appl. Phys. 104, 014104 (2007). https://doi.org/10.1063/1.2405732

    Article  CAS  Google Scholar 

  22. F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, et al., Cheminform, 38, 49 (2010). https://doi.org/10.1002/chin.200749014

    Article  Google Scholar 

  23. X. Zhang, J. Lv, L. Bourgeois, J.Y. Cui Wu, H. Wang, P.A, Webley. New J. Chem. 35, 937 (2011). https://doi.org/10.1039/c1nj00008j.

  24. X. Wang, Y. Lin, Z.C. Zhang, J.Y. Bian, J. Sci. Technol. 60, 1 (2011). https://doi.org/10.1007/s10971-011-2542-4

    Article  CAS  Google Scholar 

  25. S. Sharma, D. Basandrai, A K Srivastava. Chin. Phys. B. 11, 116201 (2017) .

  26. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Appl. Phys. Lett. 84, 1731 (2004). https://doi.org/10.1007/s00339-010-6024-2

    Article  CAS  Google Scholar 

  27. M.M. Kumar, V.R. Palkar, K. Srinivas et al., Appl. Phys. Lett. 76, 2764 (2000). https://doi.org/10.1063/1.126468

    Article  CAS  Google Scholar 

  28. A.K. Pradhan, K. Zhang, D. Hunter et al., A. J. Appl. Phys. 97, 093903 (2005). https://doi.org/10.1063/1.1881775

    Article  CAS  Google Scholar 

  29. S.K. Singh, Y.K. Kim, H. Funakubo, H. Ishiwara, Appl. Phys. Lett. 88, 162904 (2006). https://doi.org/10.1063/1.2196477

    Article  CAS  Google Scholar 

  30. D.S. García-Zaleta, Torres-Huerta. A. M, M. A. Domínguez-Crespo, et al. Ceram. Inte, 40,9225 (2014). https://doi.org/10.1016/j.ceramint.2014.01.143.

  31. N. Somrani, A. Maaloul, H. Saidi et al., J. Mater. Sci: Mater Electron 26, 3316 (2015). https://doi.org/10.1007/s10854-015-2833-6

    Article  CAS  Google Scholar 

  32. C.J. Tsai, C.Y. Yang, Y.C. Liao, Y.L. Chueh, J. Mater. Chem. 22, 17432 (2012). https://doi.org/10.1039/c2jm33859a

    Article  CAS  Google Scholar 

  33. R. Safi, H. Shokrollahi, Solid State Chem. 40, 6 (2012). https://doi.org/10.1016/j.progsolidstchem.2012.03.001

    Article  CAS  Google Scholar 

  34. M. Zhu, X.X. Yan, H.L. Xu, Carbon 182, 806 (2021). https://doi.org/10.1016/j.carbon.2021.06.054

    Article  CAS  Google Scholar 

  35. M. Zhu, X.X. Yan et al., Ceram. Int. 47, 17234 (2021). https://doi.org/10.1016/j.ceramint.2021.03.034

    Article  CAS  Google Scholar 

  36. V.A. Khomchenko, V.V. Shvartsman, P. Borisov, W. Kleemann, D.A. Kiselev, I.K. Bdikin, J.M. Vieira, A.L. Kholkin, Acta Mater. 57, 5137 (2009). https://doi.org/10.1088/0022-3727/42/4/045418

    Article  CAS  Google Scholar 

  37. K.S. Nalwa, A. Garg, J. Appl. Phys. 103, 044101 (2008). https://doi.org/10.1063/1.2838483

    Article  CAS  Google Scholar 

  38. M. Banerjee, A. Mukherjee, A. Banerjee, D. Das, S. Basu, New J. Chem. 41, 10985 (2017). https://doi.org/10.1039/C7NJ02769A

    Article  CAS  Google Scholar 

  39. R. Yang, H. Sun, J. Li et al., Cera. Inter. 44, 14302 (2018). https://doi.org/10.1016/j.ceramint.2018.04.256

    Article  CAS  Google Scholar 

  40. G. L. Yuan, S.W. Or, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 89 (5), 052905 (2006) .https://doi.org/10.1063/1.2266992.

  41. X. Chen, Y. Wang, Y. Yang, G. Yuan, J. Yin, Z. Liu, Solid. State. Commun. 152(6), 497 (2012). https://doi.org/10.1016/j.ssc.2011.12.044

    Article  CAS  Google Scholar 

  42. S. Mah, G. Prasad, Chen. Chia Chou, G.S. Kumar, Ferroelectrics. 445, 161(2013). https://doi.org/10.1080/00150193.2013.814353.

  43. Z.P. Li, J.F. Dai, C. Cheng et al., J. Phys. Chem. Solids. 156, 110171 (2021). https://doi.org/10.1016/j.jpcs.2021.110171

    Article  CAS  Google Scholar 

  44. J.L. Ye, C.C. Wang, W. Ni, X.H. Sun, J. Alloys Compd. 617, 850 (2014). https://doi.org/10.1016/j.jallcom.2014.08.026

    Article  CAS  Google Scholar 

  45. R. Yuvakkumar, S.I. Hong, J. Sol-Gel Sci. Technol. 73, 511 (2015). https://doi.org/10.1016/10.1007/s10971-015-3629-0

    Article  CAS  Google Scholar 

  46. S.T. Zhang, Y. Zhang, M.H. Lu, C.L. Du et al., Pan, App. Phys. Lett. 88, 162901 (2006). https://doi.org/10.1063/1.2195927

    Article  CAS  Google Scholar 

  47. J.A.M. Cagigas, D.S. Candela, J. Phys. Conf. Ser. 200, 012134 (2010). https://doi.org/10.1088/1742-6596/200/1/012134

    Article  CAS  Google Scholar 

  48. Y. Zhang, Y. Zhang, Q. Guo, D.W. Zhang et al., Phys. Chem. Chem. Phys. 38, 21381 (2019). https://doi.org/10.1039/C9CP04194J

    Article  Google Scholar 

  49. A.M. Kadomtseva, Yu.F. Popov, A.P. Pyatakov, G.P. Vorobev, A.K. Zvezdin, D. Viehland, Phase. Transit. 79, 1019 (2006). https://doi.org/10.1080/01411590601067235

    Article  CAS  Google Scholar 

  50. L. Malkinski, T. O’Keevan, R.E. Camley et al., J. Appl. Phys. 93, 6835 (2003). https://doi.org/10.1063/1.1558653

    Article  CAS  Google Scholar 

  51. W. Feng, J. Dai, C. Cheng et al., J. Low. Temp. Phys. 203, 55–64 (2021). https://doi.org/10.1007/s10909-021-02568-w

    Article  CAS  Google Scholar 

  52. Almessiere. MA, Slimani. Y, Korkmaz. A.D, et al. RSC. Adv. 9, 30671(2019). https://doi.org/10.1039/C9RA06353F.

  53. L.F. Fei, J.K. Yuan, Y.M. Hu, C.Z. Wu, J.L. Wang, Y. Wang, Cryst. Growth. Des. 11, 1049 (2011). https://doi.org/10.1021/cg101144s

    Article  CAS  Google Scholar 

  54. J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, L.Z. Zhang, Chem. Mater. 14, 3808 (2002). https://doi.org/10.1021/cm020027c

    Article  CAS  Google Scholar 

  55. W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 9, 13669 (1994). https://doi.org/10.1021/j100102a038

    Article  Google Scholar 

  56. R.Q. Guo, L. Fang, W. Dong, F.G. Zheng, J. Phys. Chem. C. 114, 21390 (2010). https://doi.org/10.1021/jp104660a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Nature Science Foundation of China (No.11664023), and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals of China. Gansu Youth Science and Technology Fund Project (No. 21JR7RF887), Gansu Province Higher Colleges Innovation Ability Enhancement Project (No.2020B-375), and Key Laboratory of Solar Power System Engineering Project in Gansu Province, Jiuquan Vocational and Technical College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Li, Z., Wen, X. et al. Tuning photocatalytic activity and magnetic behavior of Bi0.8Re0.2FeO3(Re = Nd, Sm) multiferroics. J Mater Sci: Mater Electron 33, 725–738 (2022). https://doi.org/10.1007/s10854-021-07343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07343-x

Navigation