Skip to main content
Log in

Activated carbons derived from sugarcane bagasse for high-capacitance electrical double layer capacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Activated carbon (AC) from sugarcane bagasse was prepared using a simple two-step method of carbonization and chemical activation with four different activating agents (HNO3, H2SO4, NaOH, and KOH). Amorphous carbon structure as identified by X-ray diffraction was observed in all samples. Scanning electron microscopy revealed that the AC had more porosity than the non-activated carbon (non-AC). Specific capacitance of the non-AC electrode was 32.58 F g−1 at the current density of 0.5 A g−1, whereas the AC supercapacitor provided superior specific capacitances of 50.25, 69.59, 109.99, and 138.61 F g−1 for the HNO3 (AC-HNO3), H2SO4 (AC-H2SO4), NaOH (AC-NaOH), and KOH (AC-KOH) activated carbon electrodes, respectively. The AC-KOH electrode delivered the highest specific capacitance (about 4 times of the non-AC electrode) because of its good surface wettability, the largest specific surface area (1058.53 m2 g−1), and the highest total specific pore volume (0.474 cm3 g−1). The AC-KOH electrode also had a great capacitance retention of almost 100% after 1000 GCD cycles. These results demonstrate that our AC developed from sugarcane bagasse has a strong potential to be used as high stability supercapacitor electrode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Sivachidambaram, J.J. Vijaya, L.J. Kennedy, R. Jothiramalingam, H.A. Al-Lohedan, M.A. Munusamy, E. Elanthamilan, J.P. Merlin, New J. Chem. 41, 3939 (2017)

    CAS  Google Scholar 

  2. W. Du, Z. Zhang, L. Du, X. Fan, Z. Shen, X. Ren, Y. Zhao, C. Wei, S. Wei, J. Alloys Compd. 797, 1031 (2019)

    CAS  Google Scholar 

  3. S. Ahmed, M. Rafat, A. Ahmed, Adv. Nat. Sci.: Nanosci. Nanotechnol. 9, 035008 (2018)

    Google Scholar 

  4. C.S. Yang, Y.S. Jang, H.K. Jeong, Curr. Appl. Phys. 14, 1616 (2014)

    Google Scholar 

  5. Y. Zhao, Y. Meng, P. Jiang, J. Power Sources 259, 219 (2014)

    CAS  Google Scholar 

  6. G. Zhang, Y. Chen, Y. Chen, H. Guo, Mater. Res. Bull. 102, 391 (2018)

    CAS  Google Scholar 

  7. F. Guo, X. Jiang, X. Jia, S. Liang, L. Qian, Z. Rao, J. Electroanal. Chem. 844, 105 (2019)

    CAS  Google Scholar 

  8. S. Zhang, Q. Zhang, S. Zhu, H. Zhang, X. Liu, Energy Sources A (2019). https://doi.org/10.1080/15567036.2019.1624881

    Article  Google Scholar 

  9. L. Zhu, F. Shen, R.L. Smith, L. Yan, L. Li, X. Qi, Chem. Eng. J. 316, 770 (2017)

    CAS  Google Scholar 

  10. K.M. Horax, S. Bao, M. Wang, Y. Li, Chin. Chem. Lett. 28, 2290 (2017)

    CAS  Google Scholar 

  11. A. Phakkhawan, P. Klangtakai, A. Chompoosor, S. Pimanpang, V. Amornkitbamrung, J. Mater. Sci.: Mater. Electron. 29, 9406 (2018)

    CAS  Google Scholar 

  12. A. Kurniawan, L.K. Ong, F. Kurniawan, C.X. Lin, F.E. Soetaredjo, X.S. Zhao, S. Ismadji, RSC Adv. 4, 34739 (2014)

    CAS  Google Scholar 

  13. Z.S. Iro, C. Subramani, S.S. Dash, Int. J. Electrochem. Sci. 11, 10628 (2016)

    CAS  Google Scholar 

  14. R.R. Salunkhe, S.H. Hsu, K.C.W. Wu, Y. Yamauchi, Chemsuschem 7, 1551 (2014)

    CAS  Google Scholar 

  15. P. Tagsin, P. Klangtakai, V. Harnchana, V. Amornkitbamrung, S. Pimanpang, P. Kumnorkaen, J. Korean Phys. Soc. 71, 997 (2017)

    CAS  Google Scholar 

  16. D. Ganguly, D. Pahari, N.S. Das, P. Howli, B. Das, D. Banerjee, K.K. Chattopadhyay, J. Electroanal. Chem. 778, 12 (2016)

    CAS  Google Scholar 

  17. C. Dai, J. Wan, J. Shao, F. Ma, Mater. Lett. 193, 279 (2017)

    CAS  Google Scholar 

  18. M.A. Nazem, M.H. Zare, S. Shirazian, RSC Adv. 10, 1463 (2020)

    CAS  Google Scholar 

  19. K.Z. Yan, M.A.A. Zaini, A. Arsad, N.S. Nasri, Chem. Eng. Trans. 72, 151 (2019)

    Google Scholar 

  20. R. Taslim, T.R. Dewi, E. Taer, A. Apriwandi, A. Agustino, R.N. Setiadi, J. Phys.: Conf. Ser. 1120, 012084 (2018)

    Google Scholar 

  21. H. Jin, J. Hu, S. Wu, X. Wang, H. Zhang, H. Xu, K. Lian, J. Power Sources 384, 270 (2018)

    CAS  Google Scholar 

  22. E.Y.L. Teo, L. Muniandy, E.P. Ng, F. Adam, A.R. Mohamed, R. Jose, K.F. Chong, Electrochim. Acta 192, 110 (2016)

    CAS  Google Scholar 

  23. K. Chaitra, R.T. Vinny, P. Sivaraman, N. Reddy, C. Hu, K. Venkatesh, C.S. Vivek, N. Nagaraju, N. Kathyayini, J. Energy Chem. 26, 56 (2017)

    Google Scholar 

  24. W.L. Zhang, J.H. Xu, D.X. Hou, J. Yin, D.B. Liu, Y.P. He, H.B. Lin, J. Colloid Interface Sci. 530, 338 (2018)

    CAS  Google Scholar 

  25. E. Taer, W.S. Mustika, F. Agustino, N. Hidayu, R. Taslim, IOP Conf. Ser.: Earth Environ. Sci. 58, 012065 (2017)

    Google Scholar 

  26. A. Jain, S.K. Tripathi, J. Energy Storage 4, 121 (2015)

    Google Scholar 

  27. K.L. Van, T.T.L. Thi, Prog. Nat. Sci.: Mater. Int. 24, 191 (2014)

    Google Scholar 

  28. V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, B. Wei, J. Phys. Chem. C 111, 7527 (2007)

    CAS  Google Scholar 

  29. M. Doloksaribu, B. Prihandoko, K. Triyana, Int. J. Sci.: Basic Appl. Res. 35, 430 (2017)

    Google Scholar 

  30. B. Khalid, Q. Meng, R. Akram, B. Cao, Desalin. Water Treat. 57, 2195 (2016)

    CAS  Google Scholar 

  31. M.T. Izquierdo, B. Rubio, J. Hazard. Mater. 155, 199 (2008)

    CAS  Google Scholar 

  32. R.L. Tseng, J. Colloid Interface Sci. 303, 494 (2006)

    CAS  Google Scholar 

  33. F.O. Ochai-Ejeh, A. Bello, J. Dangbegnon, A.A. Khaleed, M.J. Madito, F. Bazegar, N. Manyala, J. Mater. Sci. 52, 10600 (2017)

    CAS  Google Scholar 

  34. D. Jia, X. Yu, H. Tan, X. Li, F. Han, L. Li, H. Liu, J. Mater. Chem. A 5, 1516 (2017)

    CAS  Google Scholar 

  35. M. Baysal, K. Bilge, B. Yılmaz, M. Papila, Y. Yürüm, J. Environ. Chem. Eng. 6, 1702 (2018)

    CAS  Google Scholar 

  36. J. Phiri, J. Dou, T. Vuorinen, P.A.C. Gane, T.C. Maloney, ACS Omega 4, 18108 (2019)

    CAS  Google Scholar 

  37. J. Yan, H. Zhang, Z. Xie, J. Liu, AIP Conf. Proc. 1864, 020218 (2017)

    Google Scholar 

  38. L.Z. Fan, S. Qiao, W. Song, M. Wu, X. He, X. Qu, Electrochim. Acta 105, 299 (2013)

    CAS  Google Scholar 

  39. G. Zhou, C. Xu, W. Cheng, Q. Zhang, W. Nie, J. Anal. Methods Chem. 2015, 467242 (2015)

    Google Scholar 

  40. A. Aldana-Pérez, L. Lartundo-Rojas, R. Gómez, M.E. Niño-Gómez, Fuel 100, 128 (2012)

    Google Scholar 

  41. Y. Yao, Y. Guo, W. Du, X. Tong, X. Zhang, J. Mater. Sci.: Mater. Electron. 29, 17695 (2018)

    CAS  Google Scholar 

  42. Q. Liang, L. Ye, Z.H. Huang, Q. Xu, Y. Bai, F. Kang, Q.H. Yang, Nanoscale 6, 13831 (2014)

    CAS  Google Scholar 

  43. I.I. Gurten Inal, Z. Aktas, Appl. Surf. Sci. 514, 145895 (2020)

    CAS  Google Scholar 

  44. S. Hu, S. Zhang, N. Pan, Y.L. Hsieh, J. Power Sources 270, 106 (2014)

    CAS  Google Scholar 

  45. L. Zhang, H. Gu, H. Sun, F. Cao, Y. Chen, G.Z. Chen, Carbon 132, 573 (2018)

    CAS  Google Scholar 

  46. M.R. Jisha, Y.J. Hwang, J.S. Shin, K.S. Nahm, T.P. Kumar, K. Karthikeyan, N. Dhanikaivelu, D. Kalpana, N.G. Renganathan, A.M. Stephan, Mater. Chem. Phys. 115, 33 (2009)

    CAS  Google Scholar 

  47. M. Jana, P. Samanta, N.C. Murmu, T. Kuila, J. Mater. Chem. A 5, 12863 (2017)

    CAS  Google Scholar 

  48. M. Jana, S. Saha, P. Khanra, P. Samanta, H. Koo, N.C. Murmu, T. Kuila, J. Mater. Chem. A 3, 7323 (2015)

    CAS  Google Scholar 

  49. Y. Xie, H. Du, RSC Adv. 5, 89689 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Research Network NANOTEC (RNN) program of the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Higher Education, Science, Research and Innovation and Khon Kaen University, Thailand and by National Research Council of Thailand (NRCT) (Contract No. 6200072) and Research and Academic Affairs Promotion Fund, Faculty of Science, Khon Kaen University, Fiscal year 2019 (RAAPF), by Thailand Science Research and Innovation and Srinakharinwirot University (Contract No. 028/2564). A. Phakkhawan is grateful to the Development and Promotion of Science and Technology Talents Project (DPST) for providing a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samuk Pimanpang or Pawinee Klangtakai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phakkhawan, A., Horprathum, M., Chanlek, N. et al. Activated carbons derived from sugarcane bagasse for high-capacitance electrical double layer capacitors. J Mater Sci: Mater Electron 33, 663–674 (2022). https://doi.org/10.1007/s10854-021-07334-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07334-y

Navigation