Skip to main content
Log in

Low-cost electrochemical sensor based on montmorillonite for antibiotic tetracycline hydrochloride detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tetracycline hydrochloride (TC(HCl)) has been extensively used as veterinary drugs and food additives in feed, but the abuse of TC(HCl) poses a great threat to the ecological environment and human health. In this paper, TC(HCl) in aqueous solution was successfully probed by an iron cation exchanged montmorillonite modified glassy carbon electrode (Fe-Mt/GCE) via a direct voltametric method. The electrochemical response sensitivity of Fe-Mt-150/GCE is 27.1 µA µM−1 cm−2. Compared with the traditional electrode, the Fe-Mt/GCE exhibits higher response current intensity in the rapid scanning process, which should be contributed to the larger surface area and more active sites of the modified electrode for the oxidation reaction of TC(HCl). Additionally, it is found that higher scanning corresponds to better signal, implying there are enough active sites in Fe-Mt/GCE for TC(HCl) detection. The machine learning method was further employed to explore the optimum parameters. The predicted data are highly consistent with the experimental data, which were verified by the testing phase in machine learning. The application of machine learning to describe and summarize the data may bring new ideas to the future researches. Montmorillonite could be potentially applied as an electrochemical sensor for antibiotic tetracycline hydrochloride detection due to its low cost and easy fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Li, L. Zhu, W. Yang, X. He, S. Zhao, X. Zhang, W. Tang, J. Wang, T. Yue, Z. Li, Amino-functionalized Al-MOF for fluorescent detection of tetracyclines in Milk. J. Agric. Food Chem. 67, 1277–1283 (2019)

    Article  CAS  Google Scholar 

  2. N. Hassani, A. Baraket, S. Boudjaoui, E. Neto, J. Bausells, N.E. Bari, B. Bouchikhi, A. Elaissari, A. Errachid, N. Zine, Development and application of a novel electrochemical immune sensor for tetracycline screening in honey using a fully integrated electrochemical Bio-MEMS. Biosens. Bioelectron. 130, 330–337 (2019)

    Article  Google Scholar 

  3. T. Wang, Q. Mei, Z. Tao, H. Wu, M. Zhao, S. Wang, Y. Liu, A smart phone-integrated ratio metric fluorescence sensing platform for visual and quantitative point-of-care testing of tetracycline. Biosens. Bioelectron. 148, 111791 (2020)

    Article  CAS  Google Scholar 

  4. S. Graslund, B.E. Bengtsson, Chemicals and biological products used in south-east Asian shrimp farming, and their potential impact on the environment—a review. Sci. Total Environ. 280, 93–131 (2001)

    Article  CAS  Google Scholar 

  5. L. Ge, H. Li, X. Du, M. Zhu, W. Chen, T. Shi, N. Hao, Q. Liu, K. Wang, Facile one-pot synthesis of visible light-responsive BiPO4/nitrogen doped graphene hydrogel for fabricating label-free photo electrochemical tetracycline aptasensor. Biosens. Bioelectron. 111, 131–137 (2018)

    Article  CAS  Google Scholar 

  6. J. Sun, T. Gan, H. Zhu, Y.M. Liu, Direct electrochemical sensing for oxytetracycline in food using a zinc cation-exchanged montmorillonite. Appl. Clay Sci. 101, 598–603 (2014)

    Article  CAS  Google Scholar 

  7. J. Wang, R. Cheng, Y. Wang, L. Sun, L. Chen, X. Dai, J. Pan, G. Pan, Y. Yan, Surface-imprinted fluorescence microspheres as ultrasensitive sensor for rapid and effective detection of tetracycline in real biological samples. Sensors Actuators B Chem. 263, 533–542 (2018)

    Article  CAS  Google Scholar 

  8. P. Yan, D. Jiang, Y. Tian, L. Xu, J. Qian, H. Li, J. Xia, H. Li, A sensitive signal-on photoelectrochemical sensor for tetracycline determination using visible-light-driven flower-like CN/BiOBr composites. Biosens. Bioelectron. 111, 74–81 (2018)

    Article  CAS  Google Scholar 

  9. J.M. Dewdney, L. Maes, J.P. Raynaud, F. Blanc, J.P. Scheid, T. Jackson, S. Lens, C. Verschueren, Risk assessment of antibiotic residues of β-lactams and macrolides in food products with regard to their immuno-allergic potential. Food Chem. Toxicol. 29, 477–483 (1991)

    Article  CAS  Google Scholar 

  10. J.A.J. Madden, S.F. Plumier, J. Tang, I. Garaiova, N.T. Plumier, M. Herbison, J.O. Hunter, T. Shimada, L. Cheng, T. Shirakawa, Effect of probiotics on preventing disruption of the intestinal microflora following antibiotic therapy: a double-blind, placebo-controlled pilot study. Int. Immunopharmacol. 5, 1091–1097 (2005)

    Article  CAS  Google Scholar 

  11. Q. Wang, W.M. Zhao, Optical methods of antibiotic residues detections: a comprehensive review. Sensors Actuators B Chem. 269, 238–256 (2018)

    Article  CAS  Google Scholar 

  12. Y.M. Tian, T. Bu, M. Zhang, X.Y. Sun, P. Jia, Q.Z. Wang, Y.N. Liu, F. Bai, S. Zhao, L. Wang, Metal-polydopamine framework based lateral flow assay for high sensitive detection of tetracycline in food samples. Food Chem. 339, 127854 (2021)

    Article  CAS  Google Scholar 

  13. M.X. Feng, G.N. Wang, K. Yang, H.Z. Liu, J.P. Wang, Molecularly imprinted polymer-high performance liquid chromatography for the determination of tetracycline drugs in animal derived foods. Food Control 69, 171–176 (2016)

    Article  CAS  Google Scholar 

  14. X.M. Peng, W.D. Luo, J.Q. Wu, F.P. Hu, Y.Y. Hu, L. Xu, G.P. Xu, Y. Jian, H.L. Dai, Carbon quantum dots decorated heteroatom co-doped core-shell Fe0@POCN for degradation of tetracycline via multiply synergistic mechanisms. Chemosphere 268, 128806 (2021)

    Article  CAS  Google Scholar 

  15. L. Li, L.H. Shi, J. Jia, O. Eltayeb, W.J. Lu, Y.H. Tang, C. Dong, S.M. Shuang, Red fluorescent carbon dots for tetracycline antibiotics and pH discrimination from aggregation-induced emission mechanism. Sensors Actuators B Chem 332, 129513 (2021)

    Article  CAS  Google Scholar 

  16. O.A. Abafe, P. Gatyeni, L. Matika, A multi-class multi-residue method for the analysis of polyether ionphores, tetracyclines and sulfonamides in multi-matrices of animal and aquaculture fish tissues by ultra-high performance liquid chromatography tandem mass spectrometry. Food Addit. Contam. Part A 37, 438–450 (2020)

    Article  Google Scholar 

  17. X.D. Zhao, X.J. Li, Y. Li, X.L. Zhang, F.H. Zhai, T.Z. Ren, Y.T. Li, Metagenomic analysis reveals functional genes in soil microbial electrochemical removal of tetracycline. J. Hazard. Mater. 408, 124880 (2021)

    Article  CAS  Google Scholar 

  18. P.H. Wu, Y. Li, P. Wu, C. Yu, Microbial fuel cell-driven alkaline thermal hydrolysis for pretreatment of wastewater containing high concentrations of tetracycline in the cathode chamber. J. Environ. Chem. Eng. 9, 104659 (2021)

    Article  CAS  Google Scholar 

  19. H. Guo, Y. Su, Y. Shen, Y. Long, W. Li, In situ decoration of Au nanoparticles on carbon nitride using a single-source precursor and its application for the detection of tetracycline. J. Colloid Interface Sci. 536, 646–654 (2019)

    Article  CAS  Google Scholar 

  20. Y. Xu, M. Gao, G. Zhang, X. Wang, J. Li, S. Wang, Electrochemically reduced graphene oxide with enhanced electrocatalytic activity toward tetracycline detection. Chin. J. Catal. 36, 1936–1942 (2015)

    Article  CAS  Google Scholar 

  21. C. Mousty, Sensors and biosensors based on clay-modified electrodes—new trends. Appl. Clay Sci. 27, 159–177 (2004)

    Article  CAS  Google Scholar 

  22. Y. Li, H. Huang, R. Cui, D. Wang, Z. Yin, D. Wang, L. Zheng, J. Zhang, Y. Zhao, H. Yuan, J. Dong, X. Guo, B. Sun, Electrochemical sensor based on graphdiyne is effectively used to determine Cd2+ and Pb2+ in water. Sensors Actuators B Chem. 332, 129519 (2021)

    Article  CAS  Google Scholar 

  23. S. Hassanpoor, N. Rouhi, Electrochemical sensor for determination of trace amounts of cadmium (II) in environmental water samples based on MnO2/RGO nanocomposite. Int. J. Environ. Anal. Chem. 101, 513–532 (2021)

    Article  CAS  Google Scholar 

  24. J. Xu, Y. Chau, Y.K. Lee, Phage-based electrochemical sensors: a review. Micromachines 10, 855 (2019)

    Article  Google Scholar 

  25. J. Xu, C. Zhao, Y. Chau, Y.K. Lee, The synergy of chemical immobilization and electrical orientation of T4 bacteriophage on a micro electrochemical sensor for low-level viable bacteria detection via Differential Pulse Voltammetry. Biosens. Bioelectron. 151, 111914 (2020)

    Article  CAS  Google Scholar 

  26. Aaryashree, Y. Takeda, M. Kanai, A. Hatano, Y. Yoshimi, M. Kida: A “single-use” ceramic-based electrochemical sensor chip using molecularly imprinted carbon paste electrode. Sensors 20, 5847 (2020)

  27. Q. Han, C. Wang, P. Liu, G. Zhang, L. Song, Y. Fu, Achieving synergistically enhanced dual-mode electrochemiluminescent and electrochemical drug sensors via a multi-effect porphyrin-based metal-organic framework. Sensors Actuators B Chem 330, 129388 (2021)

    Article  CAS  Google Scholar 

  28. A. Walcarius, Electrochemical applications of silica based organic–inorganic hybrid materials. Chem. Mater. 13, 3351–3372 (2001)

    Article  CAS  Google Scholar 

  29. Z. Navratilova, P. Kula, Clay modified electrodes: present applications and prospects. Electroanalysis 15, 837–846 (2003)

    Article  CAS  Google Scholar 

  30. K. Buruga, H. Song, J. Shang, N. Bolan, J.T. Kalathi, K.H. Kim, A review on functional polymer-clay based nanocomposite membranes for treatment of water. J. Hazard. Mater. 379, 120584 (2019)

    Article  CAS  Google Scholar 

  31. J.J. Fan, W. Zhou, Q. Wang, Z.J. Chu, L.Q. Yang, L. Yang, J. Sun, L. Zhao, J.M. Xu, Z.Q. Chen, Structure dependence of water vapor permeation in polymer nanocomposite membranes investigated by positron annihilation lifetime spectroscopy. J. Membr. Sci. 549, 581–587 (2018)

    Article  CAS  Google Scholar 

  32. J.Y. Liu, Z. Chen, L. Yao, S.G. Wang, L. Huang, C.J. Dong, L.H. Niu, The 2D platelet confinement effect on the membrane hole structure probed by electrochemical impedance spectroscopy. Electrochem. Commun. 106, 106517 (2019)

    Article  CAS  Google Scholar 

  33. R.M. Apetrei, P. Camurlu, The effect of montmorillonite functionlization on the performance of glucose biosensors based on composite montmorillonite/PAN nanofibers. Electrochim. Acta 353, 136484 (2020)

    Article  CAS  Google Scholar 

  34. Z. Chen, S.T. Luo, L. Yao, Y. Zhang, Z.D. Lin, S.G. Wang, The inductive effect of montmorillonite/polyether sulfone membrane during the ion diffusion process. Appl. Clay Sci. 203, 106002 (2021)

    Article  CAS  Google Scholar 

  35. Y. Xiang, G. Villemure, Electron transport in clay modified electrodes: study of electron transfer between electrochemically oxidized tris(2,2V-bipyridyl)iron cations and clay structural iron(II) sites. Can. J. Chem. 70, 1833–1837 (1992)

    Article  CAS  Google Scholar 

  36. J. Xiao, G. Villemure, Preparation, characterization and electrochemistry of synthetic copper clays. Clays Clay Miner. 46, 195–203 (1998)

    Article  CAS  Google Scholar 

  37. K. Yao, K. Shimazu, M. Nakata, A. Yamagishi, Clay modified electrodes as studied by the quartz crystal microbalance: adsorption of ruthenium complexes. J. Electroanal. Chem. 442, 235–242 (1998)

    Article  CAS  Google Scholar 

  38. K. Yao, K. Shimazu, M. Nakata, A. Yamagishi, Claymodified electrodes as studied by the quartz crystal microbalance: redox processes of ruthenium and iron complexes. J. Electroanal. Chem. 443, 253–261 (1998)

    Article  CAS  Google Scholar 

  39. L. Wu, Y. Duan, L. Chen, N. Tang, J. Li, Q. Qian, Q. Wang, G. Lv, Study on controllable assembly of stearic acid within interlayer spacing of montmorillonite and its energy storage performance. Langmuir 35, 5684–5692 (2019)

    Article  CAS  Google Scholar 

  40. L.J. Leeson, J.E. Krueger, R.A. Nash, Concerning the structural assignment of the second and third acidity constants of the tetracycline antibiotics. Tetrahedron Lett. 4, 1155–1160 (1963)

    Article  Google Scholar 

  41. J. Jawad, A.H. Hawari, S. Zaidi, Modeling of forward osmosis process using artificial neural networks (ANN) to predict the permeate flux. Desalination 484, 114427 (2020)

    Article  CAS  Google Scholar 

  42. N.A. Darwish, N. Hilal, H. Al-Zoubi, A.W. Mohammad, Neural networks simulation of the filtration of sodium chloride and magnesium chloride solutions using nanofiltration membranes. Chem. Eng. Res. Des. 85, 417–430 (2007)

    Article  CAS  Google Scholar 

  43. C. Aguzzi, P. Cerezo, G. Sandri, F. Ferrari, S. Rossi, C. Bonferoni, C. Caramella, C. Viseras, Intercalation of tetracycline into layered clay mineral for drug delivery purposes. Mater. Technol. 29, B96–B99 (2014)

    Article  CAS  Google Scholar 

  44. A. Jha, A.C. Garade, M. Shirai, C.V. Rode, Metal cation-exchanged montmorillonite clay as catalysts for hydroxyalkylation reaction. Appl. Clay Sci. 74, 141–146 (2013)

    Article  CAS  Google Scholar 

  45. L. Zhang, X. Lu, X. Liu, J. Zhou, H. Zhou, Hydration and mobility of interlayer ions of (Nax, Cay)-montmorillonite: a molecular dynamics study. J. Phys. Chem. C 118, 29811–29821 (2014)

    Article  CAS  Google Scholar 

  46. L.V. Govea, H. Steinfind, Thermal stability and magnetic properties of Fe-polyoxocation intercalated montmorillonite. Chem. Mater. 9, 849–856 (1997)

    Article  CAS  Google Scholar 

  47. X.M. Sun, Z. Ji, M.X. Xiong, W. Chen, The electrochemical sensor for the determination of tetracycline based on graphene/ L-cysterine composite film. J. Electrochem. Soc. 164, B107 (2017)

    Article  CAS  Google Scholar 

  48. S. Negrea, L.A. Diaconu, V. Nicorescu, S. Motoc, C. Orha, F. Manea, Graphene oxide electroreduced onto boron-doped diamond and electrode corated with silver (Ag/GO/BDD) electrode for tetracycline detection in aqueous solution. Nanomaterials 11, 1566 (2021)

    Article  CAS  Google Scholar 

  49. Z.Y. Li, C.Q. Liu, V. Sarpong, Z.Y. Gu, Multisegment nanowire/nanoparticle hybrid arrays as electrochemical biosensors for simultaneous detection of antibiotics. Biosens. Bioelectron. 126, 632–639 (2019)

    Article  CAS  Google Scholar 

  50. C.M.F. Calixto, P. Cervini, E. Cavalheiro, Determination of tetracycline in environmental water samples at a graphite-polyurethane composite electrode. J. Braz. Chem. Soc. 23, 938–943 (2012)

    Article  CAS  Google Scholar 

  51. L. Devkota, L.T. Nguyen, T.T. Vu, B. Piro, Electrochemical determination of tetracycline using AuNP-coated molecularly imprinted over oxidized polypyrrole sensing interface. Electrochim. Acta 270, 535–542 (2018)

    Article  CAS  Google Scholar 

  52. D. Vega, L. Agui, A. Gonzalez-Cortes, P. Yanez-Sedeno, J.M. Pingarron, Voltammetry and amperometric detection of tetracyclines at multi-wall carbon nanotube modified electrodes. Anal. Bioanal. Chem. 389, 951–958 (2007)

    Article  CAS  Google Scholar 

  53. Y. Zhao, Q. Wang, H. Wang, H. Zhang, X. Sun, T. Bu, Y. Liu, W. Wang, Z. Xu, L. Wang, Europium-based metal-organic framework containing characteristic metal chains: a novel turn-on fluorescence sensor for simultaneous high-performance detection and removal of tetracycline. Sensors Actuators B Chem. 334, 129610 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

The work was the financial support from the Innovation Science Foundation of Wuhan Institute of Technology (Grant No. CX2020152), Natural Science Foundation of Hubei Province (Grant No. 2020CFB279) and Scientific Research Program of Hubei Province Department of Education (Grant No. B2020052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Chen.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Yang, X., Chen, Z. et al. Low-cost electrochemical sensor based on montmorillonite for antibiotic tetracycline hydrochloride detection. J Mater Sci: Mater Electron 33, 427–442 (2022). https://doi.org/10.1007/s10854-021-07316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07316-0

Navigation