Skip to main content
Log in

Synthesis, growth, structural, physicochemical, linear, and nonlinear optical properties of new hybrid [2(C10H20O5) Ba] [Co (SCN)4] single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel organometallic single crystal of Bis(15-Crown-5-k5O) barium tetrakis (isothiocynato-kN) cobalt (II) [BCBCTC] was synthesized by slow evaporation solution growth technique at ambient temperature. The grown title compound has been harvested with a dimension of 8 × 5 × 2 mm3 during a period of 10–15 days. The lattice cell parameters, crystal symmetry, and structure were investigated by single-crystal X-ray diffraction technique. Additionally, the different facets of various crystal planes were indexed by powder X-ray diffraction patterns. The result reveals that the title compound belongs to orthorhombic crystal system with a space group of Pnma. The spectroscopic properties of grown crystal were analyzed by FTIR, micro-Raman, and UV–optical spectra. From the UV–optical absorbance spectrum was clearly shown that the cut-off wavelength of the BCBCTC is ~ 369 nm, and optical bandgap is ~ 3.36 eV found to be Tauc’s relation. Moreover, the grown crystal surface morphology, reverse growth rate, and presence of chemical compositions were further verified by FE-SEM, EDAX, and etching studies. The thermal stability and mechanical property were calculated by TG-DSC and Vickers’s hardness tester. The various dielectric properties such as dielectric constant (εr) and dielectric loss (tan δ) of the grown title compound were studied at a function of temperature, and results are discussed. Furthermore, the linear and nonlinear coefficients such as nonlinear refractive index (n2), nonlinear absorption (β), third-order susceptibility (χ3), and then hyper polarizability (γ) were measured by Z-Scan studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Showrilu, V. Ramesh, K. Rajarajan, S.A. Martin Britto Dhas, IOP .Conf Series: Mater. Sci. Eng. 872, 012136 (2020)

    Article  CAS  Google Scholar 

  2. V. Ramesh, B. Gunasekaran, M. Krishnamohan, K. Rajarajan, Mater. Res. Express 6, 116205 (2019)

    Article  CAS  Google Scholar 

  3. C. Sundararajan, S. Sagadevan, Mater. Re. 21(1), e20160595 (2018). https://doi.org/10.1590/1980-5373-MR-2016-0595

    Article  Google Scholar 

  4. V. Ramesh, K. Rajarajan, Mech. Mater. Sci. Eng. ISSN 2412–5954, (2017). https://doi.org/10.2412/mmse.61.54.732.

  5. V. Ramesh, A. Shahabuddin Syed, K. Jagannathan, K. Rajarajan, Spectrochim. Acta A 108, 236 (2013)

    Article  CAS  Google Scholar 

  6. V. Ramesh, K. Sendil Kumar, A. Subashini, A. Shihabuddeen, K. Jaganathan, AIP Conf. Proc., 1447 (2012)

  7. G. Pabitha, R. Dhanasekaran, Mater. Sci. Engg. B 177, 1149–1155 (2012)

    Article  CAS  Google Scholar 

  8. R. Josephine Usha, A.R. Baby Sugandh, V. Joseph, P. Sagayaraj, Int. J. Rapid Comm. 48(1), 74–77 (2015)

    Google Scholar 

  9. Sheng-Li, J.-Y. Wu, Y.-P. Tian, H. Ming, P. Wang, M.-H. Jiang, H.-K. Fun, Eur. J. Inorg. Chem. (2006). https://doi.org/10.1002/ejic.200500906

    Article  Google Scholar 

  10. R.D. Shannon, Acta Crystallogr A 32, 751767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  11. R. Vukovic, A. Erceg, V. Pilizvota, D. Ubaric, Acta Alimentaria 28(2), 141–147 (1999)

    Article  CAS  Google Scholar 

  12. Bruker APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA (2008)

  13. G.M Sheldrick, SADABS University of Gottingen Germany (1996)

  14. G.M. Sheldrick, Acta Cryst. A64, 112–122 (2008)

    Article  Google Scholar 

  15. G.M. Sheldrick, Acta Cryst. C71, 3–8 (2015)

    Google Scholar 

  16. K. Liu, M. Niu, D. Wang. Acta Cryst. E66, m68 (2010)

  17. V. Ramesh, K. Rajarajan, B. Gunasekaran, IUCrData.4, x190888 (2019)

  18. V. Ravisankar, V. Ramesh, M. Krishnamohan, B. Gunasekarana, T. C. Sabari Girisun, IUCrData, 6, x210024 (2021)

  19. X.Q. Wang, W.T. Yu, D. Xu, M.K. Lu, D.R. Yuan, G.T. Lu, Acta Crystallogr. C56647–648 (2000)

  20. X.Q. Wang, W.T. Yu, D. Xu, M.K. Lu, D.R. Yuan, Acta Crystallogr. C 56, 418–420 (2000)

    Article  Google Scholar 

  21. X.-Q. Wang, W.-T. Yu, D. Xu, M.-K. Lu, D.-R. Yuan, J.-R. Liu, G.-T. Lu, Acta Crystallogr. C 56, 1305–1307 (2000)

    Article  Google Scholar 

  22. X.-Q. Wang, W.-T. Yu, D. Xu, ActaCrystallogr. E62, m2249–m2251 (2006)

    Google Scholar 

  23. X.-Q. Wang, W.-T. Yu, D. Xu, G.-H. Zhang, Y.-L. Geng, Acta Crystallogr. C 61, m278–m280 (2005)

    Article  Google Scholar 

  24. D. Sivavishnu, R. Srineevasan, J. Johnson, Mater. Sci. Energy Technol. 1, 205–214 (2018). https://doi.org/10.1016/j.mset.2018.08.004

    Article  Google Scholar 

  25. P. Asokan, S. Kalainathan, J. Phys. Chem. C 121(40), 22384–22395 (2017). https://doi.org/10.1021/acs.jpcc.7b07805

    Article  CAS  Google Scholar 

  26. M. Packiyaraja, S.M. RaviKumar, R. Srineevasan, R. Ravisankar, Mater. Sci. Eng. 360(1), 012031 (2018). https://doi.org/10.1088/1757899X/360/1/01203

    Article  Google Scholar 

  27. R. Sankar, C.M. Ragavan, M. Balaji, R. Mohankumar, R. Jayavel, Cryst. Growth Des Mater. Sci. Eng. 3600120317, 348 (2007)

    Article  Google Scholar 

  28. R. Robert, C. Justin Raj, S. Krishnan, S. Jerome Das, Physica B 405, 20–24 (2010)

    Article  CAS  Google Scholar 

  29. V. Ramesh, K. Rajarajan, Appl. Phys. B 113, 99 (2013)

    Article  CAS  Google Scholar 

  30. P. Karuppasamy, M.S. Pandian, P. Ramasamy, S. Verma, Opt. Mater. 79, 152–171 (2018). https://doi.org/10.1016/j.optmat.2018.03.041

    Article  CAS  Google Scholar 

  31. P. Paramasivam, C. Ramachandra Raja, Spectro Chimica Acta Part A 79(5), 1109–11 (2011). https://doi.org/10.1016/j.saa.2011.04.028

    Article  CAS  Google Scholar 

  32. T.A. Hedge, A. Dutta, V. Gandhiraj, Int. J. Eng. Technol. Innovation 9(4), 257–286 (2019)

    Google Scholar 

  33. S. Gunasekaran, S. Ponnusamy, Cryst. Res. Technol. 41, 130–137 (2006). https://doi.org/10.1002/crat.200510544

    Article  CAS  Google Scholar 

  34. C. Topacli, A. Topacli, Initio calculations and vibrational structure of sulfanilamide. J. Mol. Struct. 644, 145 (2003)

    Article  CAS  Google Scholar 

  35. X.Q. Wang et al., Physica B 405, 1071–1080 (2010)

    Article  CAS  Google Scholar 

  36. C.M. Raghavan, R. Sankar, R. Mohan Kumar, R. Jayavel, J. of Crystal Growth 311, 1346–1351 (2009)

    Article  CAS  Google Scholar 

  37. C. Muthuselvi, B. Sumathi, B. Ravikumar, Pharmac. Chem. J. 5(5), 35–45 (2018)

    CAS  Google Scholar 

  38. A.M. Selvapandiyan, S. Chandran, M. Srinivasan, P. Ramasamy, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03161-9

    Article  Google Scholar 

  39. S. Rafi Ahamed, J. Balaji, P. Srinivasan, Mater. Res. Innovations (2017). https://doi.org/10.1080/14328917.2017.1320837

    Article  Google Scholar 

  40. R. Hanumantharao, S. Kalainathan Hindawi, Corpor. J. Chem. (2013). https://doi.org/10.1122/2013/305932

    Article  Google Scholar 

  41. K. Sangwal, Mater. Chem. Phys. 63, 145–152 (2000). https://doi.org/10.1016/S0254-0584(99)00216-3

    Article  CAS  Google Scholar 

  42. R. Vivekanandhan, K. Raju, S. Sahaya Jude Dhas, V. Chithambaram, Int. J. Appl. Eng. Res. ISSN 0973–4562 13, 13454–13459 (2018)

  43. N. Saravanan, V. Chithambaram, V. Ravisankar, J. Mater. Sci – Mater. Electron. 29, 5009–5013 (2018). https://doi.org/10.1007/s10854-017-8462-5

    Article  CAS  Google Scholar 

  44. E.M. Onitsch, Mikroscopia. 2, 131–151 (1947)

    Google Scholar 

  45. M. Meena, C.K. Mahadevan, Cryst. Res. Technol. (2008). https://doi.org/10.1002/crat.200711064

    Article  Google Scholar 

  46. R. Miller, Appl. Phys. Lett. 5, 17 (1964). https://doi.org/10.1063/1.1754022

    Article  CAS  Google Scholar 

  47. P. Rekha, G. Chakkaravarthi, R. Mohan Kumar, G. Vinitha, R. Kanagadurai, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01279-z

    Article  Google Scholar 

  48. J. D. Jackson, WileyEastern 321 (1978)

  49. D.R. Penn, Phys. Rev. 128, 2093–2097 (1962)

    Article  CAS  Google Scholar 

  50. C. Balarew, R. Duhlew, J. Solid State Chem. 551, 1–6 (1984)

    Article  Google Scholar 

  51. N.M. Ravindra, V.K. Srivastava, J. Infrared Phys. 20, 67–69 (1980)

    Article  CAS  Google Scholar 

  52. B.R.A. Nijboer, M.J. Renne, Chem. Phys. Lett. 2, 35 (1968)

    Article  CAS  Google Scholar 

  53. B.W. Kwaadgras, M. Verdult, M. Dijkstra, R. van Roij, J. Chem. Phys. 135, 134105 (2011). https://doi.org/10.1063/1.3637046

    Article  CAS  Google Scholar 

  54. R. Anbarasan, M. Anna, A. Lakshmi, J. Mater. Sci. Mater. Electron. 29, 14827–14834 (2018). https://doi.org/10.1007/s10854-018-9619-6

    Article  CAS  Google Scholar 

  55. S. NaliniJayanthia, N. Bhuvaneswari, Mater. Today Proceed. 3361, 3368 (2018). https://doi.org/10.1016/j.matpr.2017.11.580

    Article  CAS  Google Scholar 

  56. V. Ravisankar, V. Ramesh, B. Gunasekaran, M. Krishnamohan, T.C. Sabari Girisun, A. Dhanusha, ECS J. Solid State Sci. Tech. 10, 091008 (2021). https://doi.org/10.1149/2162-8777/ac2325

    Article  CAS  Google Scholar 

  57. M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quant. Electron 26, 760–769 (1990)

    Article  CAS  Google Scholar 

  58. N.Y. Kamber, G. Zhang, S. Liu, S.M. Mikha, W. Haidong, Opt. Commun 184, 475–483 (2000)

    Article  CAS  Google Scholar 

  59. Sheik-Bahae, M. Said, IEEE J. Quantum. Electron. 26, 760–769 (1990)

    Article  CAS  Google Scholar 

  60. S. Shettigar, G. Umesh, K. Chandrasekharan, B. Kalluraya, Synth. Met. 157(2–3), 142–146 (2007). https://doi.org/10.1016/j.synthmet.2007.01.003

    Article  CAS  Google Scholar 

  61. E.W. Van Stryland, M. Sheik-Bahae, Org. nonlinear Mater. 18, 655–692 (1998)

    Google Scholar 

  62. E. W. Van Stryland, M. Sheik-Bahae, M. G. Kuzyk, C.W. Dirk, Z-scan measurements of characterization techniques and tabulations for organic nonlinear materials. Marcel Dekker, Inc.,1998, 655–692 (1998)

  63. Subashini, R. Kumaravel, S. Leela, H.S. Evans, D. Sastikumar, K. Ramamurthi, Spectrochimica Acta A, Mol. Biomol. Spectrosc. 78, 935–941 (2011). https://doi.org/10.1016/j.saa.2010.11.041

    Article  CAS  Google Scholar 

  64. M.T. Zhao, B.P. Singh, P.N. Prasad, J. Chem. Phys. 89, 5535 (1988). https://doi.org/10.1063/1.455560

    Article  CAS  Google Scholar 

  65. R. Mohankumar, K. Rukmani, J. Nonlinear Opt. Phy. Mater 28(2), 1950012 (2019)

    Article  Google Scholar 

  66. K. Siva, S. Kalainathan, M. Yamada, Y. Kondo, F. Hamada, RSC Adv. (2016). https://doi.org/10.1039/C6RA05055G

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful thanks to SRM Institute of science and technology (Deemed University), Kattankulathur, Chengalpattu Dist, Tamilnadu, India provided major instrumentation speciality SRM-NRC, and micro-Raman SRM-SCIF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gunasekaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravisankar, V., Ramesh, V., Gunasekaran, B. et al. Synthesis, growth, structural, physicochemical, linear, and nonlinear optical properties of new hybrid [2(C10H20O5) Ba] [Co (SCN)4] single crystal. J Mater Sci: Mater Electron 33, 9380–9394 (2022). https://doi.org/10.1007/s10854-021-07313-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07313-3

Navigation