Skip to main content

Advertisement

Log in

Rational design of uniformly embedded Cu/CoTe nanoparticles in freestanding rGO sheets for visible light-induced degradation of toxic dyes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The future catalytic conversion technologies using an inexpensive catalyst is beneficial as they influence energy-saving and harvest-boosted photocatalytic performances toward environmentally carcinogenic pollutants removal. Here, we demonstrate a feasible hydrothermal-assisted strategy to engineer a novel low-dimensional ordered nanoarchitecture comprising Cu ion-modulated CoTe nanoalloy grown onto reduced graphene nanosheets (rGO/Cu/CoTe nanocomposites) is established for toxic dye removal applications. They are advancing the excellence of Cu ion-modulated CoTe nanoalloy catalytic sites encapsulated carbon sheets for effective electron/hole transport, thus boosting catalytic reactions. This obtained integral nanoarchitecture may enhance ion/mass transportation by the greatly ordered crystalline structure and ease the formation of reactive species, radicals, and intermediate products. The holey rGO/Cu/CoTe displays enhanced photocatalytic performance toward visible-light-induced photodegradation of toxic dye Methylene Blue (MB) and Methyl Orange (MO). The 98% and 90.3% degradation efficiencies for MB and MO dyes are observed within 180 min, respectively. Furthermore, the influence of cation modulation on the active catalytic sites could be ascribed by a greatly exposed atom on a lateral surface, consequential from an enormous surface area compared to other chalcogen-based carbon nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. D. Sivaraj, K. Vijayalakshmi, M. Srinivasan, P. Ramasamy, Ceram. Int. 47, 25074 (2021)

    Article  CAS  Google Scholar 

  2. W.S. Chai, J.Y. Cheun, P.S. Kumar, M. Mubashir, Z. Majeed, F. Banat, S.-H. Ho, P.L. Show, Journal of Cleaner Production 126589 (2021)

  3. S.Y. Cheng, P.-L. Show, J.C. Juan, J.-S. Chang, B.F. Lau, S.H. Lai, E.P. Ng, H.C. Yian, T.C. Ling, Chemosphere 262, 127829 (2021)

    Article  CAS  Google Scholar 

  4. R.M.A. Kanwar, Z.M. Khan, H.U. Farid, Inter. J. Environ. Sci. Technol. 1 (2021)

  5. Z. Zhang, Y. Wu, L. Luo, G. Li, Y. Li, H. Hu, Sci. Total. Environ. 148291 (2021)

  6. N. Li, X. Lu, M. He, X. Duan, B. Yan, G. Chen, S. Wang, J. Hazardous. Mater. 125478 (2021)

  7. G. Yadav, A. Mishra, P. Ghosh, R. Sindhu, V. Vinayak, A. Pugazhendhi, Sci. Total. Environ. 796, 149022 (2021)

    Article  CAS  Google Scholar 

  8. A. Padmanaban, G. Murugadoss, N. Venkatesh, S. Hazra, M.R. Kumar, R. Tamilselvi, P. Sakthivel, J. Environ. Chem. Eng. 9, 105976 (2021)

    Article  CAS  Google Scholar 

  9. U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170, 520 (2009)

    Article  CAS  Google Scholar 

  10. K. Kasinathan, J. Kennedy, M. Elayaperumal, M. Henini, M. Malik, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  11. K. Kaviyarasu, C.M. Magdalane, D. Jayakumar, Y. Samson, A.K.H. Bashir, M. Maaza, D. Letsholathebe, A.H. Mahmoud, J. Kennedy, J. King. Saud University-Science 32, 1516 (2020)

    Article  Google Scholar 

  12. C.M. Magdalane, K. Kaviyarasu, G.M.A. Priyadharsini, A.K.H. Bashir, N. Mayedwa, N. Matinise, A.B. Isaev, N.A. Al-Dhabi, M.V. Arasu, S. Arokiyaraj, J. Mater. Res. Technol. 8, 2898 (2019)

    Article  CAS  Google Scholar 

  13. J. Lin, Z. Luo, J. Liu, P. Li, Mater. Sci. Semicond. Process. 87, 24 (2018)

    Article  CAS  Google Scholar 

  14. A. Padmanaban, N. Padmanathan, T. Dhanasekaran, R. Manigandan, S. Srinandhini, P. Sivaprakash, S. Arumugam, V. Narayanan, J. Electroanal. Chem. 877, 114658 (2020)

    Article  CAS  Google Scholar 

  15. N. Raza, W. Raza, H. Gul, K.-H. Kim, Environ. Res. 194, 110499 (2021)

    Article  CAS  Google Scholar 

  16. L. Nisar, M. Sadaqat, A. Hassan, A. Shah, M. Najam-Ul-Haq, M.N. Ashiq, M.F. Ehsan, K.S. Joya, Fuel 280, 118666 (2020)

    Article  CAS  Google Scholar 

  17. L. Zhong, Y. Bao, L. Feng, Electrochim. Acta 321, 134656 (2019)

    Article  CAS  Google Scholar 

  18. Z. Zhang, Z. Cai, L. Xia, D. Zhao, F. Fan, Y. Huang, ACS Appl. Mater. Interfaces. 13, 30967 (2021)

    Article  CAS  Google Scholar 

  19. W. Zhang, X. Wang, K.W. Wong, W. Zhang, T. Chen, W. Zhao, S. Huang, ACS Appl. Mater. Interfaces. 13, 34134 (2021)

    Article  CAS  Google Scholar 

  20. Y. Wang, S. Wang, Y. Wu, Z. Wang, H. Zhang, Z. Cao, J. He, W. Li, Z. Yang, L. Zheng, J. Alloy. Compd. 851, 156733 (2021)

    Article  CAS  Google Scholar 

  21. H. Safajou, M. Ghanbari, O. Amiri, H. Khojasteh, F. Namvar, S. Zinatloo-Ajabshir, and M. Salavati-Niasari, Inter. J. Hydrogen Ener. 46, 20534 (2021)

  22. Y. Zeng, J. Zhong, H. Wang, M. Fu, D. Ye, Y. Hu, Chem. Eng. J. 425, 131658 (2021)

    Article  CAS  Google Scholar 

  23. M. Imranullah, T. Hussain, R. Ahmad, J.S. Hwang, S. Ahmad, I. Shakir, D.J. Kang, J. Mater. Res. Technol. 15, 623 (2021)

    Article  CAS  Google Scholar 

  24. S. Panimalar, R. Uthrakumar, E.T. Selvi, P. Gomathy, C. Inmozhi, K. Kaviyarasu, J. Kennedy, Surfaces and Interfaces 20, 100512 (2020)

    Article  CAS  Google Scholar 

  25. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)

    Article  CAS  Google Scholar 

  26. R. Suresh, R. Udayabhaskar, C. Sandoval, E. Ramírez, R.V. Mangalaraja, H.D. Mansilla, D. Contreras, J. Yáñez, New J. Chem. 42, 8485 (2018)

    Article  CAS  Google Scholar 

  27. H. Wang, Y. Wang, L. Tan, L. Fang, X. Yang, Z. Huang, J. Li, H. Zhang, Y. Wang, Appl. Catal. B 244, 568 (2019)

    Article  CAS  Google Scholar 

  28. T. Dhanasekaran, A. Padmanaban, R. Manigandan, S.P. Kumar, A. Stephen, V. Narayanan, J. Mater. Sci.: Mater. Electron. 28, 12726 (2017)

    CAS  Google Scholar 

  29. P. Gnanamozhi, V. Renganathan, S.-M. Chen, V. Pandiyan, M.A. Arockiaraj, N.S. Alharbi, S. Kadaikunnan, J.M. Khaled, K.F. Alanzi, Ceram. Int. 46, 18322 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author (A.P) recognizes the University of Madras, Department of Inorganic Chemistry, Chennai, for providing the lab facilities. The author recognizes the SSN College of Engineering, Kalavakkam, Tamil Nadu, for financial assistance in SSN PDF. The author acknowledges the NRC, SRMIST, for providing the XPS instrumentation facilities. The author recognizes SRMIST for high-resolution scanning electron microscope (HR-SEM) facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Padmanaban.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 100.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmanaban, A., Dhanasekaran, T., Dhanavel, S. et al. Rational design of uniformly embedded Cu/CoTe nanoparticles in freestanding rGO sheets for visible light-induced degradation of toxic dyes. J Mater Sci: Mater Electron 33, 9358–9367 (2022). https://doi.org/10.1007/s10854-021-07303-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07303-5

Navigation