Skip to main content
Log in

H2O2-assisted structural transformation of Mn3O4 nanoparticles to nanorods for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Utilizing Manganese Chloride tetra hydrate as a precursor, Pure and H2O2-assisted Mn3O4 were synthesized using a facile hydrothermal technique. The structural transformation was carried at room temperature by adding H2O2 to the precursor solution. The primary reactions of H2O2 in an alkaline medium, such as oxidative dissolution and moderate reducing activities are assists to modify the shape of the materials. The color of the mixture changes when H2O2 is added, and this is used to prove that the substance has undergone structural modification. It is directly visible through naked eyes. The crystal systems of the samples were analyzed through X-ray Diffraction. The surface morphology and an elemental composition of the samples were observed through scanning electron microscope and energy dispersive spectroscopy. Using Cyclic Voltammetry and Chronopotentiometry, the electrochemical characteristics of both samples were studied. In this chronopotentiometry analysis, H2O2 (Mn3O4) reveals an elevated specific capacitance of 1007 F/g at 0.1 A/g in 1 M aqueous Na2SO4 electrolyte. It has a potential window of 1.2 V, with a maximum energy density of 71 Wh/kg at a power density of 602 W/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

We have the original data and material with us.

Code availability

Not applicable.

References

  1. J. Yan, T. Wei, W. Qiao, B. Shao, Q. Zhao, L. Zhang, Z. Fan, Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta. 55(23), 6973–6978 (2010)

    Article  CAS  Google Scholar 

  2. A. Gopalakrishnan, N. Vishnu, S. Badhulika, Cuprous oxide nanocubes decorated reduced graphene oxide nanosheets embedded in chitosan matrix: a versatile electrode material for stable supercapacitor and sensing applications. J. Electroanal. Chem. 834, 187–195 (2019)

    Article  CAS  Google Scholar 

  3. C.R. Mariappan, V. Gajraj, S. Gade, A. Kumar, S. Dsoke, S. Indris, H. Ehrenberg, G.V. Prakash, R. Jose, Synthesis and electrochemical properties of rGO/polypyrrole/ferrites nanocomposites obtained via a hydrothermal route for hybrid aqueous supercapacitors. J. Electroanal. Chem. 845, 72–83 (2019)

    Article  CAS  Google Scholar 

  4. S.H. Kazemi, M.A. Kiani, M. Ghaemmaghami, H. Kazemi, Nano-architectured MnO2 electrodeposited on the Cu-decorated nickel foam substrate as supercapacitor electrode with excellent areal capacitance. Electrochim. Acta 197, 107–116 (2016)

    Article  CAS  Google Scholar 

  5. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, in Materials for sustainable energy a collection of peer-reviewed research and review articles from Nature Publishing Group. ed. by V. Dusastre (Co-Published with Macmillan Publishers Ltd, UK, 2011), pp. 171–179

    Google Scholar 

  6. J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Sci. Magazine 321(5889), 651–652 (2008)

    CAS  Google Scholar 

  7. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004)

    Article  CAS  Google Scholar 

  8. J. Liu, Y. Li, X. Huang, R. Ding, Y. Hu, J. Jiang, L. Liao, Direct growth of SnO 2 nanorod array electrodes for lithium-ion batteries. J. Mater. Chem. 19(13), 1859–1864 (2009)

    Article  CAS  Google Scholar 

  9. D. Chen, Q. Wang, R. Wang, G. Shen, Ternary oxide nanostructured materials for supercapacitors: a review. J. Mater. Chem. A 3(19), 10158–10173 (2015)

    Article  CAS  Google Scholar 

  10. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)

    Article  CAS  Google Scholar 

  11. J. Zhao, Z. Li, X. Yuan, T. Shen, L. Lin, M. Zhang, A. Meng, Q. Li, Novel core-shell multi-dimensional hybrid nanoarchitectures consisting of Co (OH) 2 nanoparticles/Ni3S2 nanosheets grown on SiC nanowire networks for high-performance asymmetric supercapacitors. Chem. Eng. Sci. 357, 21–32 (2019)

    Article  CAS  Google Scholar 

  12. D. Zhang, Y. Shao, X. Kong, M. Jiang, X. Lei, Hierarchical carbon-decorated Fe3O4 on hollow CuO nanotube array: Fabrication and used as negative material for ultrahigh-energy density hybrid supercapacitor. Chem. Eng. Sci. 349, 491–499 (2018)

    Article  CAS  Google Scholar 

  13. D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44(7), 1777–1790 (2015)

    Article  CAS  Google Scholar 

  14. D. Cericola, R. Kötz, Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits. Electrochim. Acta. 72, 1–17 (2012)

    Article  CAS  Google Scholar 

  15. B. Shunmugapriya, A. Rose, T. Maiyalagan, T. Vijayakumar, Effect of cobalt doping on the electrochemical performance of trimanganese tetraoxide. Nanotechnology 31(28), 285401 (2020)

    Article  CAS  Google Scholar 

  16. J. Bo, X. Luo, H. Huang, L. Li, W. Lai, X. Yu, Morphology-controlled fabrication of polypyrrole hydrogel for solid-state supercapacitor. J. Power Sources 407, 105–111 (2018)

    Article  CAS  Google Scholar 

  17. S. Chang, J. Pu, J. Wang, H. Du, Q. Zhou, Z. Liu, C. Zhu, J. Li, H. Zhang, Electrochemical fabrication of monolithic electrodes with core/shell sandwiched transition metal oxide/oxyhydroxide for high-performance energy storage. ACS Appl. Mater. Interfaces 8(39), 25888–25895 (2016)

    Article  CAS  Google Scholar 

  18. A.A. Yadav, S.N. Jadhav, D.M. Chougule, P.D. Patil, U.J. Chavan, Y.D. Kolekar, Spray deposited Hausmannite Mn3O4 thin films using aqueous/organic solvent mixture for supercapacitor applications. Electrochim. Acta 206, 134–142 (2016)

    Article  CAS  Google Scholar 

  19. Y. Qiao, Q. Sun, J. Xi, H. Cui, Y. Tang, X. Wang, A modified solvothermal synthesis of porous Mn3O4 for supercapacitor with excellent rate capability and long cycle life. J. Alloys Compd 660, 416–422 (2016)

    Article  CAS  Google Scholar 

  20. M. Aghazadeh, A. Bahrami-Samani, D. Gharailou, M.G. Maragheh, M.R. Ganjali, P. Norouzi, Mn3O4 nanorods with secondary plate-like nanostructures; preparation, characterization and application as high performance electrode material in supercapacitors. J. Mater. Sci. 27(11), 11192–11200 (2016)

    CAS  Google Scholar 

  21. L. Wang, G. Duan, S.M. Chen, X. Liu, Hydrothermally controlled synthesis of α-MnO2, γ-MnOOH, and Mn3O4 nanomaterials with enhanced electrochemical properties. J. Alloys Compd. 752, 123–132 (2018)

    Article  CAS  Google Scholar 

  22. Z. Liu, Y. Xing, S. Fang, X. Qu, Facile synthesis of γ-MnOOH nanotubes and their application in electrochemical capacitors. J. Mater. Sci. 26(8), 5975–5979 (2015)

    CAS  Google Scholar 

  23. Z. Li, H. Bao, X. Miao, X. Chen, A facile route to growth of γ-MnOOH nanorods and electrochemical capacitance properties. J. Colloid Interf. Sci. 357(2), 286–291 (2011)

    Article  CAS  Google Scholar 

  24. J. Yao, S. Yao, F. Gao, L. Duan, M. Niu, J. Liu, Reduced graphene oxide/Mn3O4 nanohybrid for high-rate pseduocapacitive electrodes. J. Colloid. Interf. Sci. 511, 434–439 (2018)

    Article  CAS  Google Scholar 

  25. H. Jiang, T. Zhao, C. Yan, J. Ma, C. Li, Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale 2(10), 2195–2198 (2010)

    Article  CAS  Google Scholar 

  26. J.W. Lee, A.S. Hall, J.D. Kim, T.E. Mallouk, A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24(6), 1158–1164 (2012)

    Article  CAS  Google Scholar 

  27. S. Ortaboy, J.P. Alper, F. Rossi, G. Bertoni, G. Salviati, C. Carraro, R. Maboudian, MnO x-decorated carbonized porous silicon nanowire electrodes for high performance supercapacitors. Energy Environ. Sci. 10(6), 1505–1516 (2017)

    Article  CAS  Google Scholar 

  28. Y. Cheng, B. Li, Z. Wei, Y. Wang, D. Wei, D. Jia, Y. Feng, and Zhou, Y, Mn3O4 tetragonal bipyramid laden nitrogen doped and hierarchically porous carbon composite as positive electrode for high-performance asymmetric supercapacitor. J. Power Sources 451, 227775 (2020)

    Article  CAS  Google Scholar 

  29. D.P. Shaik, R. Pitcheri, Y. Qiu, O.M. Hussain, Hydrothermally synthesized porous Mn3O4 nanoparticles with enhanced electrochemical performance for supercapacitors. Ceram 45(2), 2226–2233 (2019)

    CAS  Google Scholar 

  30. D. Wang, Y. Li, Q. Wang, T. Wang, Facile synthesis of porous Mn3O4 nanocrystal–graphene nanocomposites for electrochemical supercapacitors. Eur. J. Inorg. Chem. 2012, 628–635 (2012)

    Article  CAS  Google Scholar 

  31. M. Tsuji, S. Gomi, Y. Maeda, M. Matsunaga, S. Hikino, K. Uto, T. Tsuji, H. Kawazumi, Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2. Langmuir 28(24), 8845–8861 (2012)

    Article  CAS  Google Scholar 

  32. T. Parnklang, C. Lertvachirapaiboon, P. Pienpinijtham, K. Wongravee, C. Thammacharoen, S. Ekgasit, H2O2-triggered shape transformation of silver nanospheres to nanoprisms with controllable longitudinal LSPR wavelengths. RSC adv 3(31), 12886–12894 (2013)

    Article  CAS  Google Scholar 

  33. G.S. Métraux, C.A. Mirkin, Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv. Mater 17(4), 412–415 (2005)

    Article  CAS  Google Scholar 

  34. Q. Zhang, N. Li, J. Goebl, Z. Lu, Y. Yin, A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? J. Am. Chem. Soc. 133(46), 18931–18939 (2011)

    Article  CAS  Google Scholar 

  35. R. Ranjithkumar, S.E. Arasi, N. Nallamuthu, P. Devendran, P. Lakshmanan, A. Arivarasan, M.K. Kumar, Investigation and fabrication of asymmetrical supercapacitor using nanostructured Mn3O4 immobilized carbon nanotube composite. Superlattice Microst. 138, 106380 (2020)

    Article  CAS  Google Scholar 

  36. H. Wang, L. Pilon, Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances. Electrochim Acta 64(130–139), 2012 (2012)

    Google Scholar 

  37. X. Zhang, P. Yu, D. Zhang, H. Zhang, X. Sun, Y. Ma, Room temperature synthesis of Mn3O4 nanoparticles: characterization, electrochemical properties and hydrothermal transformation to γ-MnO2 nanorods. Mater. Lett. 92, 401–404 (2013)

    Article  CAS  Google Scholar 

  38. Y. Dai, K. Wang, J. Xie, From spinel Mn 3 O 4 to layered nanoarchitectures using electrochemical cycling and the distinctive pseudocapacitive behavior. Appl. Phys. Lett. 90(10), 104102 (2007)

    Article  CAS  Google Scholar 

  39. S. Nagamuthu, S. Vijayakumar, G. Muralidharan, Ag incorporated Mn3O4/AC nanocomposite based supercapacitor devices with high energy density and power density. Dalton Trans. 43(46), 17528–17538 (2014)

    Article  CAS  Google Scholar 

  40. V. Sannasi, K.U. Maheswari, C. Karthikeyan, S. Karuppuchamy, H2O2-assisted microwave synthesis of NiO/CNT nanocomposite material for supercapacitor applications. Ionics 26, 4067–4079 (2020)

    Article  CAS  Google Scholar 

  41. K.T. Kubra, R. Sharif, B. Patil, A. Javaid, S. Shahzadi, A. Salman, S. Siddique, G. Ali, Hydrothermal synthesis of neodymium oxide nanoparticles and its nanocomposites with manganese oxide as electrode materials for supercapacitor application. J. Alloys Compd. 815, 152104 (2020)

    Article  CAS  Google Scholar 

  42. E. Payami, A. Aghaiepour, K. Rahimpour, R. Mohammadi, R. Teimuri-Mofrad, Design and synthesis of ternary GO-Fc/Mn3O4/PANI nanocomposite for energy storage applications. J. Alloys Compd. 829, 154485 (2020)

    Article  CAS  Google Scholar 

  43. G. Bharath, N. Arora, A. Hai, F. Banat, D. Savariraj, H. Taher, R.V. Mangalaraja, Synthesis of hierarchical Mn3O4 nanowires on reduced graphene oxide nanoarchitecture as effective pseudocapacitive electrodes for capacitive desalination application. Electrochim. Acta 337, 135668 (2020)

    Article  CAS  Google Scholar 

  44. G. Jian, Y. Xu, L.C. Lai, C. Wang, M.R. Zachariah, Mn 3 O 4 hollow spheres for lithium-ion batteries with high rate and capacity. J. Mater. Chem. A 2(13), 4627–4632 (2014)

    Article  CAS  Google Scholar 

  45. V.C. Bose, V. Biju, Mixed valence nanostructured Mn 3 O 4 for supercapacitor applications. Bull. Mater. Sci. 38(4), 865–873 (2015)

    Article  CAS  Google Scholar 

  46. D. Prakash, C. Amente, K. Dharamvir, B. Singh, R. Singh, E.R. Shaaban, Y. Al-Douri, R. Khenata, M. Darroudi, K.D. Verma, Synthesis, purification and microstructural characterization of nickel doped carbon nanotubes for spintronic applications. Ceram. Int. 42(5), 5600–5606 (2016)

    Article  CAS  Google Scholar 

  47. M. Guo, J. Balamurugan, N.H. Kim, J.H. Lee, High-energy solid-state asymmetric supercapacitor based on nickel vanadium oxide/NG and iron vanadium oxide/NG electrodes. Appl. Catal. B 239, 290–299 (2018)

    Article  CAS  Google Scholar 

  48. J. Balamurugan, T.T. Nguyen, V. Aravindan, N.H. Kim, J.H. Lee, Flexible solid-state asymmetric supercapacitors based on nitrogen-doped graphene encapsulated ternary metal-nitrides with ultralong cycle life. Adv. Func. Mater. 28(44), 1804663 (2018)

    Article  CAS  Google Scholar 

  49. J. Balamurugan, T.T. Nguyen, V. Aravindan, N.H. Kim, S.H. Lee, J.H. Lee, All ternary metal selenide nanostructures for high energy flexible charge storage devices. Nano Energy 65, 103999 (2019)

    Article  CAS  Google Scholar 

  50. J. Balamurugan, C. Li, T.D. Thanh, O.K. Park, N.H. Kim, J.H. Lee, Hierarchical design of Cu 1–x Ni x S nanosheets for high-performance asymmetric solid-state supercapacitors. J. Mater. Chem. A 5(37), 19760–19772 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank SRM Central Instrumentation Facility (SCIF), and Nanotechnology Research Center (NRC), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India for the support in characterization studies. Financial support obtained from the Department of Space, Government of India (Grant No. B.19012/57/2016-II) through RESPOND project is gratefully acknowledged.

Funding

This work was not funded and no specific grant was received.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to the design of the research work. Material synthesis, characterizations, and interpretation of the results were performed by BS. The manuscript was written by BS. The author TV pointed out major corrections and revised the manuscript. The authors read and accepted the final manuscript.

Corresponding author

Correspondence to T. Vijayakumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shunmugapriya, B., Vijayakumar, T. H2O2-assisted structural transformation of Mn3O4 nanoparticles to nanorods for supercapacitor applications. J Mater Sci: Mater Electron 33, 9334–9346 (2022). https://doi.org/10.1007/s10854-021-07300-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07300-8

Navigation