Skip to main content
Log in

Effect of terbium doping in bismuth ferrite nanoparticles for the degradation of organic pollutant under sunlight irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, we have studied the influence of terbium (Tb) doping in bismuth ferrite (BiFeO3/BFO) nanoparticles towards its photocatalytic activity by varying the concentration of Tb such as Bi1−xTbxFeO3, x = 0, 1, 3, 5% through a simple hydrothermal method. The obtained samples are characterized using XRD, TEM, XPS, and UV–Vis diffuse reflectance spectroscopy and studied their photocatalytic properties by degrading the rhodamine B (RhB) dye molecules under sunlight illumination. The XRD results confirmed a gradual transformation of crystal structure of BFO from rhombohedral to orthorhombic structure with the increasing concentration of Tb. Dopant induced size reduction in particles is confirmed through TEM and the obtained results revealed the average particles size of 5% Tb dopant BFO around 40 to 80 nm for 5% Tb doped BFO. It indicates that the Tb doping in BFO could considerably affect the photocatalytic activity, and accordingly, the photocatalytic performance is gradually enhanced with increasing Tb content up to an optimum level. To understand the improved mechanism of photocatalytic degradation by Tb-doped BFO, the free radicals trapping tests and photoluminescence are carried out. Based on these outcomes, the improved catalytic activity of Tb-doped BFO is attributed to its reduced bandgap energy from 2.35 to 2.29 eV, improved optical absorption profile, the effective charge separation and transfer of photo-induced charge carriers with increased recombination resistance in the system and accordingly, a possible photocatalytic mechanism of Tb-doped BFO is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.O. Tijani, O.O. Fatoba, G. Madzivire, L.F. Petrik, A review of combined advanced oxidation technologies for the removal of organic pollutants from water. Water Air Soil Pollut. (2014). https://doi.org/10.1007/s11270-014-2102-y

    Article  Google Scholar 

  2. A. Machulek Jr., S.C. Oliveira, M.E. Osugi, V.S. Ferreira, F.H. Quina, R.F. Dantas, S.L. Oliveira, G.A. Casagrande, F.J. Anaissi, V.O. Silva, R.P. Cavalcante, F. Gozzi, D.D. Ramos, A.P.P. da Rosa, A.P.F. Santos, D.C. de Castro, J.A. Nogueira, Application of different advanced oxidation processes for the degradation of organic pollutants. Org. Pollut. Monit. Risk Treat. (2013). https://doi.org/10.5772/53188

    Article  Google Scholar 

  3. M.S.S. Danish, L.L. Estrella, I.M.A. Alemaida, A. Lisin, N. Moiseev, M. Ahmadi, M. Nazari, M. Wali, H. Zaheb, T. Senjyu, Photocatalytic applications of metal oxides for sustainable environmental remediation. Metals (Basel) 11, 1–25 (2021). https://doi.org/10.3390/met11010080

    Article  CAS  Google Scholar 

  4. D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. C 6, 186–205 (2005). https://doi.org/10.1016/j.jphotochemrev.2005.09.001

    Article  CAS  Google Scholar 

  5. F. Zhang, X. Wang, H. Liu, C. Liu, Y. Wan, Y. Long, Z. Cai, Recent advances and applications of semiconductor photocatalytic technology. Appl. Sci. (2019). https://doi.org/10.3390/app9122489

    Article  Google Scholar 

  6. S.H. Han, K.S. Kim, H.G. Kim, H.G. Lee, H.W. Kang, J.S. Kim, C. Il Cheon, Synthesis and characterization of multiferroic BiFeO3 powders fabricated by hydrothermal method. Ceram. Int. 36, 1365–1372 (2010). https://doi.org/10.1016/j.ceramint.2010.01.020

    Article  CAS  Google Scholar 

  7. S. Pearton, Editorial: doped nanostructures. Nanoscale 2, 1057 (2010). https://doi.org/10.1039/c005273f

    Article  CAS  Google Scholar 

  8. J. Wu, Z. Fan, D. Xiao, J. Zhu, J. Wang, Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog. Mater. Sci. 84, 335–402 (2016). https://doi.org/10.1016/j.pmatsci.2016.09.001

    Article  CAS  Google Scholar 

  9. Y. Subramanian, V. Ramasamy, R.J. Karthikeyan, G.R. Srinivasan, D. Arulmozhi, R.K. Gubendiran, M. Sriramalu, Investigations on the enhanced dye degradation activity of heterogeneous BiFeO3–GdFeO3 nanocomposite photocatalyst. Heliyon (2019). https://doi.org/10.1016/j.heliyon.2019.e01831

    Article  Google Scholar 

  10. X. Kang, S. Liu, Z. Dai, Y. He, X. Song, Z. Tan, Titanium dioxide: from engineering to applications. Catalysts (2019). https://doi.org/10.3390/catal9020191

    Article  Google Scholar 

  11. F. Huang, A. Yan, H. Zhao, Influences of doping on photocatalytic properties of TiO2 photocatalyst (2016). https://doi.org/10.5772/63234

  12. M. Serhan, M. Sprowls, D. Jackemeyer, M. Long, I.D. Perez, W. Maret, N. Tao, E. Forzani, Total iron measurement in human serum with a smartphone. Int. J. Transl. Eng. Health Med. (2019). https://doi.org/10.1109/JTEHM.2020.3005308

    Article  Google Scholar 

  13. S. Irfan, S. Rizwan, Y. Shen, L. Li, A. Asfandiyar, S. Butt, C.W. Nan, The gadolinium (Gd3+) and Tin (Sn4+) Co-doped BiFeO3 nanoparticles as new solar light active photocatalyst. Sci. Rep. 7, 1–12 (2017). https://doi.org/10.1038/srep42493

    Article  CAS  Google Scholar 

  14. N. Wang, X. Luo, L. Han, Z. Zhang, R. Zhang, H. Olin, Y. Yang, Structure, performance, and application of BiFeO3 nanomaterials. Nano–Micro Lett. (2020). https://doi.org/10.1007/s40820-020-00420-6

    Article  Google Scholar 

  15. G. Biasotto, A.Z. Simões, C.R. Foschini, M.A. Zaghete, J.A. Varela, E. Longo, Microwave–hydrothermal synthesis of perovskite bismuth ferrite nanoparticles. Mater. Res. Bull. 46, 2543–2547 (2011). https://doi.org/10.1016/j.materresbull.2011.08.010

    Article  CAS  Google Scholar 

  16. S. Godara, N. Sinha, G. Ray, B. Kumar, Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion route. J. Asian Ceram. Soc. 2, 416–421 (2014). https://doi.org/10.1016/j.jascer.2014.09.001

    Article  Google Scholar 

  17. V. Srinivas, A.T. Raghavender, K.V. Kumar, Structural and magnetic properties of Mn doped BiFeO3 nanomaterials. Phys. Res. Int. (2016). https://doi.org/10.1155/2016/4835328

    Article  Google Scholar 

  18. A. Haruna, I. Abdulkadir, S.O. Idris, Photocatalytic activity and doping effects of BiFeO3 nanoparticles in model organic dyes. Heliyon 6, e03237 (2020). https://doi.org/10.1016/j.heliyon.2020.e03237

    Article  CAS  Google Scholar 

  19. A. Wrzesinska, A. Khort, I. Bobowska, A. Busiakiewicz, A. Wypych-Puszkarz, Influence of the La3+, Eu3+, and Er3+ doping on structural, optical, and electrical properties of BiFeO3 nanoparticles synthesized by microwave-assisted solution combustion method. J. Nanomater. (2019). https://doi.org/10.1155/2019/5394325

    Article  Google Scholar 

  20. N. Sangiorgi, L. Aversa, R. Tatti, R. Verucchi, A. Sanson, Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials. Opt. Mater. (Amst.) 64, 18–25 (2017). https://doi.org/10.1016/j.optmat.2016.11.014

    Article  CAS  Google Scholar 

  21. M. Han, J. Jia, W. Wang, Pulsed laser deposition of a Bi2S3/CuInS2/TiO2 cascade structure for high photoelectrochemical performance. RSC Adv. 6, 70952–70959 (2016). https://doi.org/10.1039/c6ra14901d

    Article  CAS  Google Scholar 

  22. L.L. Long, A.Y. Zhang, Y.X. Huang, X. Zhang, H.Q. Yu, A robust cocatalyst Pd4S uniformly anchored onto Bi2S3 nanorods for enhanced visible light photocatalysis. J. Mater. Chem. A 3, 4301–4306 (2015). https://doi.org/10.1039/c4ta05818f

    Article  CAS  Google Scholar 

  23. A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 36, 1564–1574 (2004). https://doi.org/10.1002/sia.1984

    Article  CAS  Google Scholar 

  24. E. Erasmus, Electronic effects of group fragments on the XPS of Fe 2p and 3p photoelectron lines of ferrocenyl-containing chalcones. S. Afr. J. Chem. 70, 94–99 (2017). https://doi.org/10.17159/0379-4350/2017/v70a13

    Article  CAS  Google Scholar 

  25. A. Chatterjee, T. Iwasaki, T. Ebina, Structural and energetic changes of Si (100) surface with fluorine in presence of water—a density functional study. Int. J. Mol. Sci. 2, 40–56 (2001). https://doi.org/10.3390/i2020040

    Article  CAS  Google Scholar 

  26. X. Zhuang, Y. Wan, C. Feng, Y. Shen, D. Zhao, Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons. Chem. Mater. 21, 706–716 (2009). https://doi.org/10.1021/cm8028577

    Article  CAS  Google Scholar 

  27. J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. J. Hazard. Mater. 168, 253–261 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.036

    Article  CAS  Google Scholar 

  28. M. Younas, M.A. Gondal, U. Mehmood, K. Harrabi, Z.H. Yamani, F.A. Al-Sulaiman, Performance enhancement of dye-sensitized solar cells via cosensitization of ruthenizer Z907 and organic sensitizer SQ2. Int. J. Energy Res. 42, 3957–3965 (2018). https://doi.org/10.1002/er.4154

    Article  CAS  Google Scholar 

  29. H.T. Tung, N.T. Thao, L.Q. Vinh, The reduced recombination and the enhanced lifetime of excited electron in QDSSCs based on different ZnS and SiO2 passivation. Int. J. Photoenergy (2018). https://doi.org/10.1155/2018/8545207

    Article  Google Scholar 

  30. B. Mei, K. Han, G. Mul, Driving surface redox reactions in heterogeneous photocatalysis: the active state of illuminated semiconductor-supported nanoparticles during overall water-splitting. ACS Catal. 8, 9154–9164 (2018). https://doi.org/10.1021/acscatal.8b02215

    Article  CAS  Google Scholar 

  31. S. Elhani, H. Ishitobi, Y. Inouye, A. Ono, S. Hayashi, Z. Sekkat, Surface enhanced visible absorption of dye molecules in the near-field of gold nanoparticles. Sci. Rep. 10, 3–5 (2020). https://doi.org/10.1038/s41598-020-60839-0

    Article  CAS  Google Scholar 

  32. M.B. Johnston, L.M. Herz, Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc. Chem. Res. 49, 146–154 (2016). https://doi.org/10.1021/acs.accounts.5b00411

    Article  CAS  Google Scholar 

  33. M. Rochkind, S. Pasternak, Y. Paz, Using dyes for evaluating photocatalytic properties: a critical review. Molecules 20, 88–110 (2015). https://doi.org/10.3390/molecules20010088

    Article  CAS  Google Scholar 

  34. J. Li, N. Wu, Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal. Sci. Technol. 5, 1360–1384 (2015). https://doi.org/10.1039/c4cy00974f

    Article  CAS  Google Scholar 

  35. Y. Nam, J.H. Lim, K.C. Ko, J.Y. Lee, Photocatalytic activity of TiO2 nanoparticles: a theoretical aspect. J. Mater. Chem. A 7, 13833–13859 (2019). https://doi.org/10.1039/c9ta03385h

    Article  CAS  Google Scholar 

  36. A. Gnanaprakasam, V.M. Sivakumar, M. Thirumarimurugan, Influencing parameters in the photocatalytic degradation of organic effluent via nanometal oxide catalyst: a review. Indian J. Mater. Sci. 2015, 1–16 (2015). https://doi.org/10.1155/2015/601827

    Article  Google Scholar 

  37. P. Zheng, Z. Pan, H. Li, B. Bai, W. Guan, Effect of different type of scavengers on the photocatalytic removal of copper and cyanide in the presence of TiO2@yeast hybrids. J. Mater. Sci. Mater. Electron. 26, 6399–6410 (2015). https://doi.org/10.1007/s10854-015-3229-3

    Article  CAS  Google Scholar 

  38. Y.H. Chiu, T.F.M. Chang, C.Y. Chen, M. Sone, Y.J. Hsu, Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts (2019). https://doi.org/10.3390/catal9050430

    Article  Google Scholar 

  39. A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv. 4, 37003–37026 (2014). https://doi.org/10.1039/c4ra06658h

    Article  CAS  Google Scholar 

  40. A. Pavanello, A. Blasco, P.F. Johnston, M.A. Miranda, M.L. Marin, Enhanced photodegradation of synthetic dyes mediated by Ag3PO4-based semiconductors under visible light irradiation. Catalysts (2020). https://doi.org/10.3390/catal10070774

    Article  Google Scholar 

  41. P.A. Riley, Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 65, 27–33 (1994). https://doi.org/10.1080/09553009414550041

    Article  CAS  Google Scholar 

  42. B. Palanivel, A. Mani, Conversion of a Type-II to a Z-Scheme heterojunction by intercalation of a 0D electron mediator between the integrative NiFe2O4/g-C3N4 composite nanoparticles: boosting the radical production for photo-Fenton degradation. ACS Omega 31, 19747–19759 (2020). https://doi.org/10.1021/acsomega.0c02477

    Article  CAS  Google Scholar 

  43. B. Palanivel, C. Hu, M. Shkir, S. Alfaify, F.A. Ibrahim, M.S. Hamdy, A. Mani, Fluorine doped g-C3N4 coupled NiFe2O4 heterojunction: consumption of H2O2 for production of hydroxyl radicals towards paracetamol degradation. Colloids Interface Sci. Commun. 42, 100410 (2021). https://doi.org/10.1016/j.colcom.2021.100410

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thankfully acknowledge the Research Supporting Project (Ref. RSP-2021/160) of King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gedi Sreedevi or Baskaran Palanivel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathmanaban, G., Hossain, M.S., Macadangdang, R.R. et al. Effect of terbium doping in bismuth ferrite nanoparticles for the degradation of organic pollutant under sunlight irradiation. J Mater Sci: Mater Electron 33, 9324–9333 (2022). https://doi.org/10.1007/s10854-021-07299-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07299-y

Navigation