Skip to main content
Log in

Structural, optical and electrical properties of Bi2−xMnxTe3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Undoped and Mn doped Bi2Te3 (x = 0, 0.05 and 0.10 at%) thin films were prepared via thermal evaporation method from their bulk alloys. X-ray diffraction revealed the presence of hexagonal Bi2Te3 crystalline phase only in all undoped and Mn doped films. EDAX quantitative analysis revealed that the effective Mn doping is close to that of the intended. SEM observations revealed uniform spherical grains for all films with more porous and less dense grains at higher Mn content. The increase in Mn doping ratio to x = 0.1 decreases the carrier density and the carrier type changes to the P-type conduction. The transmittance values increased with Mn doping whereas the reflectance decreased. The optical band gap increased from 0.25 to 0.39 eV. Two layer-model was successfully used to simulate the ellipsometry measurements. The main layer was described by a combined contribution of Drude and Lorentz models. The thickness, the optical constants, and the surface roughness of the undoped and Mn doped films were extracted from the ellipsometry measurements. Upon Mn doping, the PL was quenched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Nozariasbmarz, J. Ho. Dycus, M.J. Cabral, C.M. Flack, J.S. Krasinski, J.M. Le Beau, D. Vashaee, Appl. Energy 283, 116211 (2021)

    Article  CAS  Google Scholar 

  2. Y. Li, J. Qiao, Y. Zhao, Q. Lan, P. Mao, J. Qiu, K. Tai, C. Liu, H. Cheng, J. Mater. Sci. Technol. 58, 80–85 (2020)

    Article  Google Scholar 

  3. J. Hansen, M. Nussbaum, Application of Bismuth-Telluride Thermoelectrics in Driving DNA Amplification and Sequencing Reactions, 15th International Conference on Thermoelectrics (1996)

  4. J. Yao, J. Shao, Y. Wang, Z. Zhao, G. Yang, Nanoscale 7, 12535 (2015)

    Article  CAS  Google Scholar 

  5. S.K. Pradhan, R. Barik, Appl. Mater. Today 7, 55–59 (2017)

    Article  Google Scholar 

  6. S.K. Bhukesh, A. Kumar, S.K. Gaware, Mater. Today Proc. 26, 3131–3137 (2020)

    Article  Google Scholar 

  7. A. Singh, S. Kumar, M. Singh, P. Singh, R. Singh, V.K. Gangwar, A. Lakhani, S. Patil, E.F. Schwier, T. Matsumura, K. Shimada, A.K. Ghosh, S. Chatterjee, J. Phys. Condens. Matter. 32, 305602 (2020)

    Article  CAS  Google Scholar 

  8. K. Balin, R. Rapacz, M. Weis, J. Szade, AIP Adv. 7, 056323 (2017)

    Article  Google Scholar 

  9. Y. Wang, F. Xiu, L. Cheng, L. He, M. Lang, J. Tang, X. Kou, X. Yu, X. Jiang, Z. Chen, J. Zou, K.L. Wang, Nano Lett. 12, 1170–1175 (2012)

    Article  CAS  Google Scholar 

  10. A.B. Shick, F. Máca, J. Alloy Compd. 872, 159709 (2021)

    Article  CAS  Google Scholar 

  11. M.D. Watson, L.J. Collins-McIntyre, L.R. Shelford, A.I. Coldea, D. Prabhakaran, S.C. Speller, T. Mousavi, C.R.M. Grovenor, Z. Salman, S.R. Giblin, G. van der Laan, T. Hesjedal, New J. Phys. 15, 103016 (2013)

    Article  Google Scholar 

  12. R.S. Silva, A.J. Gualdi, F.L. Zabotto, N.F. Cano, A.C.A. Silva, N.O. Dantas, J. Alloys Compod. 708, 619–622 (2017)

    Article  CAS  Google Scholar 

  13. P.I. Kusnetsov, E.A. Savelyev, V.A. Jitov, K.M. Golant, J. Phys. Conf. Ser. 1092, 012073 (2018)

    Article  Google Scholar 

  14. M. Sun, G. Tang, B. Huang, Z. Chen, Y.-J. Zhao, H. Wang, Z. Zhao, D. Chen, Q. Qian, Z. Yang, J. Materiomics 6, 467–475 (2020)

    Article  Google Scholar 

  15. A. Ghasemi, D. Kepaptsoglou, A.I. Figueroa, G.A. Naydenov, P.J. Hasnip, M.I.J. Probert, Q. Ramasse, G. van der Laan, T. Hesjedal, V.K. Lazarov, APL Materials 4, 126103 (2016)

    Article  Google Scholar 

  16. B. Jariwala, D. Shah, N.M. Ravindra, Thin Solid Films 589, 396–402 (2015)

    Article  CAS  Google Scholar 

  17. K. Barbalace, Periodic Table of Elements—Sorted by Ionic Radius, EnvironmentalChemistry.com. 1995–2021. https://environmentalchemistry.com/yogi/periodic/ionicradius.html. Accessed on 5 Aug 2021

  18. J. Růžička, O. Caha, V. Holý, H. Steiner, V. Volobuiev, A. Ney, G. Bauer, T. Duchoň, K. Veltruská, I. Khalakhan, New J. Phys. 17, 013028 (2015)

    Article  Google Scholar 

  19. D.-H. Kim, E. Byon, G.-H. Lee, S. Cho, Thin Solid Films 510, 148–153 (2006)

    Article  CAS  Google Scholar 

  20. N.H. Jo, K.J. Lee, C.M. Kim, K. Okamoto, A. Kimura, K. Miyamoto, T. Okuda, Y.K. Kim, Z. Lee, T. Onimaru, T. Takabatake, M.H. Jung, Phys. Rev. 87, 201105 (2013)

    Article  Google Scholar 

  21. A.K. Bohra, R. Bhatt, A. Singh, S. Bhattacharya, R. Basu, K.N. Meshram, S.K. Sarkar, P. Bhatt, P.K. Patro, D.K. Aswal, K.P. Muthe, S.C. Gadkari, Mater. Des. 159, 127–137 (2018)

    Article  CAS  Google Scholar 

  22. T. Zhu, L. Hu, X. Zhao, J. He, Adv. Sci. 3, 1600004 (2016)

    Article  Google Scholar 

  23. K. Carva, J. Kudrnovsky, F. Maca, V. Drchal, I. Turek, P. Balaz, V. Tkac, V. Holy, V. Sechovsky, J. Honolka, Phys. Rev. B 93, 214409 (2016)

    Article  Google Scholar 

  24. Y.S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J.G. Checkelsky, L.A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M.Z. Hasan, N.P. Ong, A. Yazdani, R.J. Cava, Phys. Rev. B 81, 195203 (2010)

    Article  Google Scholar 

  25. Y. Li, X. Zou, J. Li, G. Zhou, J. Chem. Phys. 140, 124704 (2014)

    Article  Google Scholar 

  26. S.H. Mohamed, Phys. Stat. Sol. (A) 202, 1948–1958 (2005)

    Article  CAS  Google Scholar 

  27. S.H. Mohamed, J. Phys. D Appl. Phys. 43, 035406 (2010)

    Article  Google Scholar 

  28. K.V. Divya, K.E. Abraham, Appl. Surf. Sci. 493, 1115–1124 (2019)

    Article  Google Scholar 

  29. C. Liu, Y. Yuan, X. Zhang, J. Su, X. Song, H. Ling, Y. Liao, H. Zhang, Y. Zheng, J. Li, Nanomaterials 10, 1887 (2020)

    Article  CAS  Google Scholar 

  30. M.M. Wakkad, E. Kh, Shokr, S.H. Mohamed, Phys. Stat. Sol. (A) 183, 399–411 (2001)

    Article  CAS  Google Scholar 

  31. V.A. Kulbachinskii, H. Ozaki, Y. Miyahara, K. Funagai, J. Exp. Theor. Phys. 97, 1212–1218 (2003)

    Article  CAS  Google Scholar 

  32. J. Dheepa, R. Sathyamoorthy, S. Velumani, Mater. Charact. 58, 782–785 (2007)

    Article  CAS  Google Scholar 

  33. C. Sudarshan, S. Jayakumar, K. Vaideki, C. Sudakar, Thin Solid Films 629, 28–38 (2017)

    Article  CAS  Google Scholar 

  34. E.H. Kaddouri, T. Maurice, X. Gratens, S. Charar, S. Benet, A. Mefleh, J.C. Tedenac, B. Liautard, Phys. Stat. Sol. (A) 176, 1071 (1999)

    Article  Google Scholar 

  35. A. Zimmer, N. Stein, H. Terryn, L. Johann, C. Boulanger, Phys. Stat. Sol. (C) 5, 1190–1193 (2008)

    Article  CAS  Google Scholar 

  36. M. Takashiri, Y. Asai, K. Yamauchi, Nanotechnology 27, 335703 (2016)

    Article  Google Scholar 

  37. Y.-Y. Li, G. Wang, X.-G. Zhu, M.-H. Liu, C. Ye, X. Chen, Y.-Y. Wang, K. He, L.-L. Wang, X.-C. Ma, H.-J. Zhang, X. Dai, Z. Fang, X.-C. Xie, Y. Liu, X.-L. Qi, J.-F. Jia, S.-C. Zhang, Q.-K. Xue, Adv. Mater. 22, 4002–4007 (2010)

    Article  CAS  Google Scholar 

  38. F.S. Bahabri, Life Sci. J. 9, 290 (2012)

    Google Scholar 

  39. F.S. Bahabri, S.Wl Al-raddadi, Am. J. Sci. 8, 175 (2012)

    Google Scholar 

  40. B.S. Jariwala, D.V. Shah, V. Kheraj, AIP Conf. Proc. 1451, 245–247 (2012)

    Article  CAS  Google Scholar 

  41. A.M. Adam, M. Tolan, A.A. Refaat, A. Nafady, P. Petkov, M. Ataalla, Superlattice Microst. 155, 106909 (2021)

    Article  CAS  Google Scholar 

  42. A. Zimmer, N. Stein, L. Johann, S. Van Gils, H. Terryn, E. Stijns, C. Boulanger, J. Electrochem. Soc. 152, G772–G777 (2005)

    Article  CAS  Google Scholar 

  43. A.M. Adam, J. Alloys Compd. 765, 1072–1081 (2018)

    Article  CAS  Google Scholar 

  44. Y. Saberi, S.A. Sajjadi, H. Mansouri, J. Mater. Sci. Mater. Electron. 31, 18988–18995 (2020)

    Article  Google Scholar 

  45. N. Hussain, Q. Zhang, J. Lang, R. Zhang, M. Muhammad, K. Huang, T. Cosseron, H. De Villenoisy, A. Ya, Karim, H. Wu, Adv. Optical Mater. 6, 1701322 (2018)

    Article  Google Scholar 

  46. N.O. Korsunska, I.V. Markevich, T.R. Stara, L.V. Borkovska, S. Lavoryk, L.Y. Melnichuk, O.V. Melnichuk, Ukr. J. Phys. 63, 660 (2018)

    Article  Google Scholar 

  47. A.I. Inamdar, S. Cho, Y. Jo, J. Kim, J. Han, S.M. Pawar, H. Woo, R.S. Kalubarme, C.J. Park, H. Kim, H. Im, Mate. Lett. 163, 126–129 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through Research Grant No (DSR-2021-03-0236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. A. Hadia.

Ethics declarations

Conflict of interest

Authors declares that there is no conflict of interest involved in the current work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadia, N.M.A., Mohamed, S.H., Mohamed, W.S. et al. Structural, optical and electrical properties of Bi2−xMnxTe3 thin films. J Mater Sci: Mater Electron 33, 158–166 (2022). https://doi.org/10.1007/s10854-021-07281-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07281-8

Navigation