Skip to main content
Log in

Analysis of different vacuum annealing levels for ZnSe thin films as potential buffer layer for solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to seek potential buffer layer, the influence of different vacuum annealing levels on physical properties to e-beam evaporated Zinc Selenide (ZnSe) thin films are meticulously investigated herein. The X-ray diffraction patterns of vacuum-annealed ZnSe films confirmed the prominent (111) reflection of the cubic phase where the crystallite size is found maximum (29 nm). The wavy optical transmittance spectra are observed for these ZnSe films, where higher transparency is observed in the visible region. A blue shift in the optical band gap (2.56–2.81 eV) and shrink in refractive index from 2.49 to 2.40 is observed with increasing vacuum levels. The HRTEM images demonstrated (111), (220), and (311) orientations of the lattice planes, and EDS patterns confirmed deposition of ZnSe films. The ohmic nature of the analyzed ZnSe thin films is validated by the IV characteristics where the resistivity is found in the order of 102 Ω-cm for vacuum-annealed and 104 Ω-cm for the pristine films. The AFM images indicated hill-like structures where the roughness is found to vary with vacuum level. The physical properties of ZnSe films are conspicuously tailored by vacuum annealing levels, and the findings recommend the use of ~ 5 × 10−3 mbar vacuum-annealed ZnSe thin films as potential buffer layer to the solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.A. Khurram, F. Jabar, M. Mumtaz, N.A. Khan, M. Nasir Mehmood, Effect of light, medium and heavy ion irradiations on the structural and electrical properties of ZnSe thin films. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact Mater. Atoms 313, 40–44 (2013). https://doi.org/10.1016/j.nimb.2013.08.008

    Article  CAS  Google Scholar 

  2. M.F. Hasaneen, Z.A. Alrowaili, W.S. Mohamed, Structure and optical properties of polycrystalline ZnSe thin films: validity of Swanepol’s approach for calculating the optical parameters. Mater. Res. Express 7, 016422 (2020). https://doi.org/10.1088/2053-1591/ab6779

    Article  CAS  Google Scholar 

  3. D.D. Hile, H.C. Swart, S.V. Motloung, R.E. Kroon, K.O. Egbo, L.F. Koao, The effect of annealing time on zinc selenide thin films deposited by photo-assisted chemical bath deposition. J. Phys. Chem. Solids 140, 109381 (2020). https://doi.org/10.1016/j.jpcs.2020.109381

    Article  CAS  Google Scholar 

  4. D.D. Hile, H.C. Swart, S.V. Motloung, T.E. Motaung, L.F. Koao, Structural, morphological and optical studies of zinc selenide (ZnSe) thin films synthesized at different deposition time intervals using photo-assisted chemical bath deposition technique. Physica B 575, 411706 (2019). https://doi.org/10.1016/j.physb.2019.411706

    Article  CAS  Google Scholar 

  5. A. Ennaoui, S. Siebentritt, M.C. Lux-Steiner, W. Riedl, F. Karg, High-efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers. Sol. Energy Mater. Sol. Cells 67, 31–40 (2001). https://doi.org/10.1016/S0927-0248(00)00260-9

    Article  CAS  Google Scholar 

  6. W. Eisele, A. Ennaoui, P. Schubert-Bischoff, M. Giersig, C. Pettenkofer, J. Krauser, M. Lux-Steiner, S. Zweigart, F. Karg, XPS, TEM and NRA investigations of Zn(Se, OH)/Zn(OH)2 films on Cu(In, Ga)(S, Se)2 substrates for highly efficient solar cells. Sol. Energy Mater. Sol. Cells 75, 17–26 (2003). https://doi.org/10.1016/S0927-0248(02)00104-6

    Article  CAS  Google Scholar 

  7. O. Toma, L. Ion, S. Iftimie, V.A. Antohe, A. Radu, A.M. Raduta, D. Manica, S. Antohe, Physical properties of rf-sputtered ZnS and ZnSe thin films used for double heterojunction ZnS/ZnSe/CdTe photovoltaic structures. Appl. Surf. Sci. 478, 831–839 (2019). https://doi.org/10.1016/j.apsusc.2019.02.032

    Article  CAS  Google Scholar 

  8. H. Zhang, Y. Fang, Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J. Alloys Compd. 781, 201–208 (2019). https://doi.org/10.1016/j.jallcom.2018.11.375

    Article  CAS  Google Scholar 

  9. S.Y. Wang, I. Hauksson, J. Simpson, H. Stewart, S.J.A. Adams, J.M. Wallace et al., Blue stimulated emission from a ZnSe p-n diode at low temperature. Appl. Phys. Lett. 61, 506–508 (1992). https://doi.org/10.1063/1.107869

    Article  Google Scholar 

  10. L. Qian, T. Zhang, F. Teng, Z. Xu, S. Quan, Luminescent properties and excitation mechanism of ZnSe quantum dots embedded in ZnS matrix. Mater. Chem. Phys. 100, 337–339 (2006). https://doi.org/10.1016/j.matchemphys.2006.01.017

    Article  CAS  Google Scholar 

  11. K. Gowrish Rao, K.V. Bangera, G.K. Shivakumar, Photoconductivity and photo-detecting properties of vacuum deposited ZnSe thin films. Solid State Sci. 13, 1921–1925 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.08.017

    Article  CAS  Google Scholar 

  12. N. Kouklin, L. Menon, A.Z. Wong, D.W. Thompson, J.A. Woollam, P.F. Williams, S. Bandyopadhyay, Giant photoresistivity and optically controlled switching in self-assembled nanowires. Appl. Phys. Lett. 79, 4423–4425 (2001). https://doi.org/10.1063/1.1427156

    Article  CAS  Google Scholar 

  13. Y. Shen, N. Xu, W. Hu, X. Xu, J. Sun, Z. Ying, J. Wu, Bismuth doped ZnSe films fabricated on silicon substrates by pulsed laser deposition. Solid State Electron. 52, 1833–1836 (2008). https://doi.org/10.1016/j.sse.2008.09.005

    Article  CAS  Google Scholar 

  14. J.S. Song, J.H. Chang, D.C. Oh, J.J. Kim, M.W. Cho, H. Makino, T. Hanada, T. Yao, Optimization of ZnSe growth on miscut GaAs substrates by molecular beam epitaxy. J. Cryst. Growth 249, 128–143 (2003). https://doi.org/10.1016/S0022-0248(02)02129-2

    Article  CAS  Google Scholar 

  15. C.W. Huang, H.M. Weng, Y.L. Jiang, H.Y. Ueng, Optimum growth of ZnSe film by molecular beam deposition. Vacuum 83, 313–318 (2008). https://doi.org/10.1016/j.vacuum.2008.06.004

    Article  CAS  Google Scholar 

  16. V. Arivazhagan, M.M. Parvathi, S. Rajesh, Complementary NIR absorption of ZnSe induced by multiple PbSe submonolayers by vacuum deposition technique. Vacuum 99, 95–98 (2014). https://doi.org/10.1016/j.vacuum.2013.05.001

    Article  CAS  Google Scholar 

  17. L. Wang, X. Gu, Y. Zhao, Y. Qiang, C. Huang, J. Song, Preparation of ZnO/ZnS thin films for enhancing the photoelectrochemical performance of ZnO. Vacuum 148, 201–205 (2018). https://doi.org/10.1016/j.vacuum.2017.11.023

    Article  CAS  Google Scholar 

  18. E.I. Anila, T.A. Safeera, R. Reshmi, Photoluminescence of nanocrystalline ZnS thin film grown by Sol-Gel method. J. Fluoresc. 25, 227–230 (2015). https://doi.org/10.1007/s10895-015-1515-3

    Article  CAS  Google Scholar 

  19. G.M. Lohar, S.K. Shinde, V.J. Fulari, Structural, morphological, optical and photoluminescent properties of spray-deposited ZnSe thin film. J. Semicond. 35, 113001 (2014). https://doi.org/10.1088/1674-4926/35/11/113001

    Article  CAS  Google Scholar 

  20. R. Sharma, Himanshu, S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, Physical properties of ZnSe thin films: air and vacuum annealing evolution to buffer layer applications. Phys. Lett. A 384, 126097 (2020). https://doi.org/10.1016/j.physleta.2019.126097

    Article  CAS  Google Scholar 

  21. S. Chuhadiya, R. Sharma, Himanshu, S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, Thermal annealing induced physical properties of ZnSe thin films for buffer layer in solar cells. Phys. E Low-Dimens. Syst. Nanostruct. 117, 113845 (2020). https://doi.org/10.1016/j.physe.2019.113845

    Article  CAS  Google Scholar 

  22. A. Rumberg, C. Sommerhalter, M. Toplak, A. Jäger-Waldau, M.C. Lux-Steiner, ZnSe thin films grown by chemical vapour deposition for application as buffer layer in CIGSS solar cells. Thin Solid Films 361–362, 172–176 (2000). https://doi.org/10.1016/S0040-6090(99)00790-7

    Article  Google Scholar 

  23. D.D. Hile, H.C. Swart, S.V. Motloung, T.E. Motaung, K.O. Egbo, L.F. Koao, Effect of hydrazine hydrate as complexing agent in the synthesis of zinc selenide thin films by chemical bath deposition. Thin Solid Films 693, 137707 (2020). https://doi.org/10.1016/j.tsf.2019.137707

    Article  CAS  Google Scholar 

  24. S.L. Patel, A. Purohit, S. Chander, M.D. Kannan, M.S. Dhaka, Towards post-NH4Cl treatment on CdSe thin films for solar cell applications. Vacuum 153, 43–47 (2018). https://doi.org/10.1016/j.vacuum.2018.03.038

    Article  CAS  Google Scholar 

  25. R. Agarwal, Himanshu, S.L. Patel, S. Chander, C. Ameta, M.S. Dhaka, Vacuum annealing level evolution of titania thin films: functionality as potential optical window in solar cells. Mater. Lett. 277, 128368 (2020). https://doi.org/10.1016/j.matlet.2020.128368

    Article  CAS  Google Scholar 

  26. S. Chander, M.S. Dhaka, Thermal evolution of physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cells. J. Mater. Sci. Mater. Electron. 27, 11961–11973 (2016). https://doi.org/10.1007/s10854-016-5343-2

    Article  CAS  Google Scholar 

  27. M.F. Al-Kuhaili, M.B. Mekki, S.A. Abdalla, Influence of vacuum annealing on the photoresponse of thermally evaporated cadmium telluride thin films. Thin Solid Films 686, 137412 (2019). https://doi.org/10.1016/j.tsf.2019.137412

    Article  CAS  Google Scholar 

  28. A. Purohit, S. Chander, S.P. Nehra, M.S. Dhaka, Effect of air annealing on structural, optical, morphological and electrical properties of thermally evaporated CdSe thin films. Phys. E Low-Dimens. Syst. Nanostruct. 69, 342–348 (2015). https://doi.org/10.1016/j.physe.2015.01.028

    Article  CAS  Google Scholar 

  29. S.L. Patel, S. Chander, A. Purohit, M.D. Kannan, M.S. Dhaka, Influence of NH4Cl treatment on physical properties of CdTe thin films for absorber layer applications. J. Phys. Chem. Solids 123, 216–222 (2018). https://doi.org/10.1016/j.jpcs.2018.07.021

    Article  CAS  Google Scholar 

  30. M. Imran, A. Saleem, N.A. Khan, A.A. Khurram, N. Mehmood, Amorphous to crystalline phase transformation and band gap refinement in ZnSe thin films. Thin Solid Films 648, 31–38 (2018). https://doi.org/10.1016/j.tsf.2018.01.010

    Article  CAS  Google Scholar 

  31. S.L. Patel, Himanshu, S. Chander, A. Purohit, M.D. Kannan, M.S. Dhaka, Understanding the physical properties of CdCl2 treated thin CdSe films for solar cell applications. Opt. Mater. 89, 42–47 (2019). https://doi.org/10.1016/j.optmat.2019.01.001

    Article  CAS  Google Scholar 

  32. C. Mehta, G.S.S. Saini, J.M. Abbas, S.K. Tripathi, Effect of deposition parameters on structural, optical and electrical properties of nanocrystalline ZnSe thin films. Appl. Surf. Sci. 256, 608–614 (2009). https://doi.org/10.1016/j.apsusc.2009.06.023

    Article  CAS  Google Scholar 

  33. S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, A. Subbarayan, K. Natarajan, Characterization of CdTe thin film-dependence of structural and optical properties on temperature and thickness. Sol. Energy Mater. Sol. Cells 82, 187–199 (2004). https://doi.org/10.1016/j.solmat.2004.01.017

    Article  CAS  Google Scholar 

  34. K. Ou, S. Wang, L. Bai, Y. Wang, K. Zhang, L. Yi, Investigation on annealing temperature-dependent optical properties of electron beam evaporated ZnSe thin films. Thin Solid Films 669, 247–252 (2019). https://doi.org/10.1016/j.tsf.2018.11.013

    Article  CAS  Google Scholar 

  35. M. Emam-Ismail, M. El-Hagary, E.R. Shaaban, A.M. Al-Hedeib, Microstructure and optical studies of electron beam evaporated ZnSe1−xTex nanocrystalline thin films. J. Alloys Compd. 532, 16–24 (2012). https://doi.org/10.1016/j.jallcom.2012.04.013

    Article  CAS  Google Scholar 

  36. N. Tigau, S. Condurache-Bota, R. Drasovean, J. Cringanu, R. Gavrila, Vacuum annealing effect on the structural and optical properties of antimony trioxide thin films. Rom. J. Phys. 62, 604 (2017)

    Google Scholar 

  37. P. Sharma, A. Dahshan, K.A. Aly, New quaternary Ge–Se–Sb–Ag optical materials: blue shift in absorption edge and evaluation of optical parameters. J. Alloys Compd. 616, 323–327 (2014). https://doi.org/10.1016/j.jallcom.2014.07.123

    Article  CAS  Google Scholar 

  38. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E Sci. Instrum. 16, 1214 (1983). https://doi.org/10.1088/0022-3735/16/12/023

    Article  CAS  Google Scholar 

  39. S. Condurache-Bota, G. Rusu, N. Tigau, V. Nica, R. Drasovean, Structural and optical analysis of superimposed bismuth and antimony oxides. J. Optoelectron. Adv. Mater. 11, 2159–2166 (2009)

    CAS  Google Scholar 

  40. H.G. Tompkins, E.A. Irene, Handbook of Ellipsometry (William Andrew, Park Ridge, 2005)

    Book  Google Scholar 

  41. J. Singh, Optical Properties of Condensed Matter and Applications (Wiley, Hoboken, 2006)

    Book  Google Scholar 

  42. A.S. Hassanien, K.A. Aly, A.A. Akl, Study of optical properties of thermally evaporated ZnSe thin films annealed at different pulsed laser powers. J. Alloys Compd. 685, 733–742 (2016). https://doi.org/10.1016/j.jallcom.2016.06.180

    Article  CAS  Google Scholar 

  43. T.M. Khan, M.F. Mehmood, A. Mahmood, A. Shah, Q. Raza, A. Iqbal, U. Aziz, Synthesis of thermally evaporated ZnSe thin film at room temperature. Thin Solid Films 519, 5971–5977 (2011). https://doi.org/10.1016/j.tsf.2011.03.045

    Article  CAS  Google Scholar 

  44. S.H. Wemple, Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B 7, 3767–3777 (1973). https://doi.org/10.1103/PhysRevB.7.3767

    Article  CAS  Google Scholar 

  45. S. Condurache-Bota, G. Rusu, N. Tigau, L. Leontie, Important physical parameters of Bi2O3 thin films found by applying several models for optical data. Cryst. Res. Technol. 45, 503–511 (2010). https://doi.org/10.1002/crat.201000074

    Article  CAS  Google Scholar 

  46. J. Tauc (ed.), Amorphous and Liquid Semiconductors (Springer, Boston, 1974)

    Google Scholar 

  47. K. Tanaka, Optical properties and photoinduced changes in amorphous As-S films. Thin Solid Films 66, 271–279 (1980). https://doi.org/10.1016/0040-6090(80)90381-8

    Article  CAS  Google Scholar 

  48. Himanshu, S.L. Patel, S. Chander, P. Singh, A. Thakur, M.S. Dhaka, Bi-incorporated CdTe thin films for solar cells: air annealing evolution to structural, optical, electrical and surface topographical properties. Mater. Lett. 249, 29–32 (2019). https://doi.org/10.1016/j.matlet.2019.04.032

    Article  CAS  Google Scholar 

  49. L. Wang, Y. Zhong, J. Li, W. Cao, Q. Zhong, X. Wang, X. Li, Effect of residual gas on structural, electrical and mechanical properties of niobium films deposited by magnetron sputtering deposition. Mater. Res. Express 5, 046410 (2018). https://doi.org/10.1088/2053-1591/aab8c1

    Article  CAS  Google Scholar 

  50. H.J.R. Perdjik, Thermochemical equilibria of residual gases in vacuum devices Part 1: methane formation. Vacuum 20, 321–329 (1970). https://doi.org/10.1016/S0042-207X(70)80017-3

    Article  Google Scholar 

  51. L. Liu, H. Gong, Y. Wang, J. Wang, A.T.S. Wee, R. Liu, Annealing effects of tantalum thin films sputtered on [001] silicon substrate. Mater. Sci. Eng. C 16, 85–89 (2001). https://doi.org/10.1016/S0928-4931(01)00280-6

    Article  Google Scholar 

  52. G.I. Rusu, V. Ciupina, M.E. Popa, G. Prodan, G.G. Rusu, C. Baban, Microstructural characterization and optical properties of ZnSe thin films. J. Non. Cryst. Solids 352, 1525–1528 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.01.029

    Article  CAS  Google Scholar 

  53. M. García-Méndez, F.F. Castillón, G.A. Hirata, M.H. Farías, G. Beamson, XPS and HRTEM characterization of cobalt–nickel silicide thin films. Appl. Surf. Sci. 161, 61–73 (2000). https://doi.org/10.1016/S0169-4332(00)00122-7

    Article  Google Scholar 

  54. R. Khalfi, D. Talantikite-Touati, A. Tounsi, H. Merzouk, Effect of deposition time on structural and optical properties of ZnSe thin films grown by CBD method. Opt. Mater. 106, 109989 (2020). https://doi.org/10.1016/j.optmat.2020.109989

    Article  CAS  Google Scholar 

  55. D. Suthar, G. Chasta, Himanshu, S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, Impact of different annealing conditions on physical properties of ZnSe thin films for ecofriendly buffer layer applications. Mater. Res. Bull. 132, 110982 (2020). https://doi.org/10.1016/j.materresbull.2020.110982

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Department of Science and Technology, Govt. of Rajasthan for financial assistance through Research & Development project vide No. F.7(3)ST/R&D/2016/5677. Authors also like to acknowledge MRC, MNIT Jaipur, Mohanlal Sukhadia University Udaipur and PSG Institute of Advanced Studies, Coimbatore, for deposition and characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Dhaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chasta, G., Himanshu, Patel, S.L. et al. Analysis of different vacuum annealing levels for ZnSe thin films as potential buffer layer for solar cells. J Mater Sci: Mater Electron 33, 139–157 (2022). https://doi.org/10.1007/s10854-021-07280-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07280-9

Navigation