Skip to main content

Advertisement

Log in

Surfactant-dependant self organisation of nickel pyrophosphate for electrochemical supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In quest of potential electrode material with high redox sites, better wettability, rapid ionic channels and high rate capability here we adopted a soft template method (surfactants). This work investigates the effect of non-ionic and ionic surfactant on microstructure and surface morphology thereby its electrochemical properties in detail. The physiochemical characterization of prepared samples stated that purity of prepared Ni2P2O7 was high and its surface morphology were significantly altered by different templating agents. In particular, Ni2P2O7 without and with surfactants (PEG, PVA, PVP and CTAB) showed a specific capacitance of 120, 95, 126, 128 and 250 F/g at a current density of 2 A/g, respectively. Furthermore, the asymmetric device with NiP(CTAB) as cathode own an energy density of 20 Wh/kg at a power density of 1550 W/kg and retained 70% of its initial capacitance upto 4500 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Priyadharshini, T. Pazhanivel, G. Bharathi, Carbon quantum dot incorporated nickel pyrophosphate as alternate cathode for supercapacitors. ChemistrySelect 5, 2643–2652 (2020). https://doi.org/10.1002/slct.201904334

    Article  CAS  Google Scholar 

  2. R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Electrochemical characterization of Mn: Co3O4 thin films prepared by spray pyrolysis via aqueous route. Curr. Appl. Phys. 14, 1582–1590 (2014). https://doi.org/10.1016/j.cap.2014.08.001

    Article  Google Scholar 

  3. R.C. Ambare, B.J. Lokhande, Ru incorporation enhanced electrochemical performance of spray deposited Mn:Co3O4 nano-composite: Electrochemical approach. J. Anal. Appl. Pyrolysis 132, 245–253 (2018). https://doi.org/10.1016/j.jaap.2018.01.013

    Article  CAS  Google Scholar 

  4. P. Matheswaran, P. Karuppiah, S.M. Chen, P. Thangavelu, A binder-free Ni2P2O7/Co2P2O7 nanograss array as an efficient cathode for supercapacitors. New J. Chem. 44, 13131–13140 (2020). https://doi.org/10.1039/d0nj00890g

    Article  CAS  Google Scholar 

  5. P. Matheswaran, P. Karuppiah, S.M. Chen, P. Thangavelu, B. Ganapathi, Fabrication of g-C3N4 nanomesh-anchored amorphous NiCoP2O7: tuned cycling life and the dynamic behavior of a hybrid capacitor. ACS Omega 3, 18694–18704 (2018). https://doi.org/10.1021/acsomega.8b02635

    Article  CAS  Google Scholar 

  6. F. Capitelli, M. Harcharras, H. Assaaoudi, A. Ennaciri, A.G.G. Moliterni, V. Bertolasi, Crystal structure of new hexahydrate dicobalt pyrophosphate Co2P2O7·6H2O: Comparison with Co2P2O7·2H2O, α-, β, and γ-Co2P2O7. Zeitschrift Fur Krist. 218, 345–350 (2003). https://doi.org/10.1524/zkri.218.5.345.20738

    Article  CAS  Google Scholar 

  7. Y. Niu, Y. Zhang, M. Xu, A review on pyrophosphate framework cathode materials for sodium-ion batteries. J. Mater. Chem. A 7, 15006–15025 (2019). https://doi.org/10.1039/c9ta04274a

    Article  CAS  Google Scholar 

  8. P. Sun, Z. Li, L. Zhang, C. Dong, Z. Li, H. Yao, J. Wang, G. Li, Synthesis of cobalt-nickel pyrophosphates/N-doped graphene composites with high rate capability for asymmetric supercapacitor. J. Alloys Compd. 750, 607–616 (2018). https://doi.org/10.1016/j.jallcom.2018.04.024

    Article  CAS  Google Scholar 

  9. C. Chen, N. Zhang, Y. He, B. Liang, R. Ma, X. Liu, Controllable fabrication of amorphous Co–Ni pyrophosphates for tuning electrochemical performance in supercapacitors. ACS Appl. Mater. Interfaces 8, 23114–23121 (2016). https://doi.org/10.1021/acsami.6b07640

    Article  CAS  Google Scholar 

  10. N. Zhang, C. Chen, Y. Chen, G. Chen, C. Liao, B. Liang, J. Zhang, A. Li, B. Yang, Z. Zheng, X. Liu, A. Pan, S. Liang, R. Ma, Ni2P2O7 nanoarrays with decorated C3N4 nanosheets as efficient electrode for supercapacitors. ACS Appl. Energy Mater. 1, 2016–2023 (2018). https://doi.org/10.1021/acsaem.8b00114

    Article  CAS  Google Scholar 

  11. C. Wei, S. Yang, W. Liu, X. Hou, Y. Sun, J. Zhao, W. Xiong, C. Cheng, D. Zhang, Hierarchically porous bowknot-like sodium doped Ni2P2O7-Co2P2O7 with improved supercapacitor performances. Appl. Surf. Sci. 465, 763–771 (2019). https://doi.org/10.1016/j.apsusc.2018.09.223

    Article  CAS  Google Scholar 

  12. R.C. Ambare, S.V. Khavale, U.T. Nakate, M.B. Khanvilkar, B.J. Lokhande, Electrochemical investigations of spray pyrolysed ruthenium incorporated Co3O4 electrodes prepared via aqueous route. Colloids Surf. A (2021). https://doi.org/10.1016/j.colsurfa.2021.126215

    Article  Google Scholar 

  13. R.C. Ambare, B.J. Lokhande, Spray pyrolyzed Ni incorporated cobalt oxide thin film electrodes and their electrochemical study. J. Mater. Sci. Mater. Electron. 29, 16289–16294 (2018). https://doi.org/10.1007/s10854-018-9718-4

    Article  CAS  Google Scholar 

  14. K.V. Sankar, S.C. Lee, Y. Seo, C. Ray, S. Liu, A. Kundu, S.C. Jun, Binder-free cobalt phosphate one-dimensional nanograsses as ultrahigh-performance cathode material for hybrid supercapacitor applications. J. Power Sources 373, 211–219 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.013

    Article  CAS  Google Scholar 

  15. B. Senthilkumar, Z. Khan, S. Park, K. Kim, H. Ko, Y. Kim, Highly porous graphitic carbon and Ni2P2O7 for a high performance aqueous hybrid supercapacitor. J. Mater. Chem. A 3, 21553–21561 (2015). https://doi.org/10.1039/C5TA04737D

    Article  CAS  Google Scholar 

  16. B. Saravanakumar, C. Radhakrishnan, M. Ramasamy, R. Kaliaperumal, A.J. Britten, M. Mkandawire, Surfactant determines the morphology, structure and energy storage features of CuO nanostructures. Results Phys. 13, 102185 (2019). https://doi.org/10.1016/j.rinp.2019.102185

    Article  Google Scholar 

  17. L. Bin Kong, C. Lu, M.C. Liu, Y.C. Luo, L. Kang, Effect of surfactant on the morphology and capacitive performance of porous NiCo2O4. J. Solid State Electrochem. 17, 1463–1471 (2013). https://doi.org/10.1007/s10008-013-2016-4

    Article  CAS  Google Scholar 

  18. J. Segalini, B. Daffos, P.L. Taberna, Y. Gogotsi, P. Simon, Qualitative electrochemical impedance spectroscopy study of ion transport into sub-nanometer carbon pores in electrochemical double layer capacitor electrodes. Electrochim. Acta. 55, 7489–7494 (2010). https://doi.org/10.1016/j.electacta.2010.01.003

    Article  CAS  Google Scholar 

  19. B. Akinwolemiwa, C. Wei, G.Z. Chen, Mechanisms and designs of asymmetrical electrochemical capacitors. Electrochim. Acta. 247, 344–357 (2017). https://doi.org/10.1016/j.electacta.2017.06.088

    Article  CAS  Google Scholar 

  20. Z. Khan, B. Senthilkumar, S. Lim, R. Shanker, Y. Kim, H. Ko, Redox-additive-enhanced high capacitance supercapacitors based on Co2P2O7 nanosheets. Adv. Mater. Interfaces 4, 1–7 (2017). https://doi.org/10.1002/admi.201700059

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the researchers supporting project number RSP-2021/243 King Saud University, Riyadh, Saudi Arabia. CSIR CERI Manuscript communication number. CECRI/PESVC/Pubs./2020-50.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Pazhanivel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 64497 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadharshini, M., Sandhiya, M., Sathish, M. et al. Surfactant-dependant self organisation of nickel pyrophosphate for electrochemical supercapacitors. J Mater Sci: Mater Electron 33, 9269–9276 (2022). https://doi.org/10.1007/s10854-021-07261-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07261-y

Navigation