Skip to main content
Log in

Thermal, electrical, and physical properties of novel phase stabilized material: hybrid plastilina nanocomposites for effective thermal management in electronics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To operate efficiently, high-performance devices require excellent heat dissipation to counteract overheating. Therefore, high thermal conductivity (TC) is important for nanocomposites to effectively fulfill the operating condition requirements. In this work, four new nanocomposite formulations were prepared using xGnP/graphene (carbonaceous) and BN/AlN (non-carbonaceous) fillers, infiltrated in the hybrid matrix containing plastilina and paraffin wax (PW). The TC of nanocomposites was remarkable, lying in the range between 1.417 and 2.450 W/mK, compared to the hybrid matrix with a TC of 0.342 W/mK. The TC of G1 showed an enhancement of up to 616%, while thermal diffusivity reached as high as 824%. In addition, the nanocomposites exhibited high electrical conductivity up to 0.00221 S/cm (low carbonaceous content ~ 8 wt%). Scanning electron and atomic force microscopy results indicated that the dispersion of nanocomposites was efficient. The thermogravimetric analysis demonstrated a < 5% weight loss in all nanocomposites at approximately 280 °C. Phase stability, hardness, and the Fourier-transform infrared microscopy (FTIR) results were also discussed in this work. With heightened requirements for efficient thermal management, these nanocomposites show potential utilization in various areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.J. Jia, A.D. Phule, Y. Geng, S. Wen, L. Li, Z.X. Zhang, Macromol. Mater. Eng. 306, 2000759 (2021)

    CAS  Google Scholar 

  2. J. Khan, S.A. Momin, M. Mariatti, Carbon N. Y. 168, 65 (2020)

    CAS  Google Scholar 

  3. Y. Bai, W. Han, C. Ge, R. Liu, R. Zhang, L. Wang, X. Zhang, Macromol. Mater. Eng. 304, 1900442 (2019)

    CAS  Google Scholar 

  4. X. Meng, H. Yu, L. Wang, X. Wu, B.U. Amin, Macromol. Mater. Eng. (2021). https://doi.org/10.1002/mame.202100434

    Article  Google Scholar 

  5. Y. Bai, Y. Shi, S. Zhou, H. Zou, M. Liang, Macromol. Mater. Eng. (2021). https://doi.org/10.1002/mame.202100267

    Article  Google Scholar 

  6. G. Duan, Y. Wang, J. Yu, J. Zhu, Z. Hu, Macromol. Mater. Eng. 304, 1900310 (2019)

    Google Scholar 

  7. M. Amin, N. Putra, E.A. Kosasih, E. Prawiro, R.A. Luanto, T.M.I. Mahlia, Appl. Therm. Eng. 112, 273 (2017)

    CAS  Google Scholar 

  8. P. Cheng, X. Chen, H. Gao, X. Zhang, Z. Tang, A. Li, G. Wang, Nano Energy 85, 105948 (2021)

    CAS  Google Scholar 

  9. Y. Liang, Y. Tong, Z. Tao, Q. Guo, B. Hao, Z. Liu, Macromol. Mater. Eng. 306, 2100055 (2021)

    CAS  Google Scholar 

  10. U. Beginn, Macromol. Mater. Eng. 288, 245 (2003)

    CAS  Google Scholar 

  11. B. Tan, Z. Huang, Z. Yin, X. Min, Y. Liu, X. Wu, M. Fang, RSC Adv. 6, 15821 (2016)

    CAS  Google Scholar 

  12. M. Mehrali, S. Tahan Latibari, M. Mehrali, T.M.I. Mahlia, H.S. Cornelis, Metselaar, Energy Convers. Manag. 88, 206 (2014)

    CAS  Google Scholar 

  13. J. Yang, L.S. Tang, R.Y. Bao, L. Bai, Z.Y. Liu, B.H. Xie, M.B. Yang, W. Yang, Sol. Energy Mater. Sol. Cells 174, 56 (2018)

    Google Scholar 

  14. L. Zhang, K. Zhou, Q. Wei, L. Ma, W. Ye, H. Li, B. Zhou, Z. Yu, C. Te Lin, J. Luo, X. Gan, Appl. Energy 233–234, 208 (2019)

    Google Scholar 

  15. X. Song, Y. Cai, W. Wang, X. Sun, Y. Wu, Q. Wei, Y. Hu, Sol. Energy Mater. Sol. Cells 191, 306 (2019)

    CAS  Google Scholar 

  16. X. Xu, R. Hu, M. Chen, J. Dong, B. Xiao, Q. Wang, H. Wang, Chem. Eng. J. 397, 125447 (2020)

    CAS  Google Scholar 

  17. Q.-Q. Kong, Z. Liu, J.-G. Gao, C.-M. Chen, Q. Zhang, G. Zhou, Z.-C. Tao, X.-H. Zhang, M.-Z. Wang, F. Li, R. Cai, Adv. Funct. Mater. 24, 4222 (2014)

    CAS  Google Scholar 

  18. Z.C. Lule, J. Kim, Eur. Polym. J. 134, 109849 (2020)

    CAS  Google Scholar 

  19. W. Zhu, N. Hu, Q. Wei, L. Zhang, H. Li, J. Luo, C. Te Lin, L. Ma, K. Zhou, Z. Yu, Mater. Des. 172, 107709 (2019)

    CAS  Google Scholar 

  20. Y. Li, X. Tian, W. Yang, Q. Li, L. Hou, Z. Zhu, Y. Tang, M. Wang, B. Zhang, T. Pan, Y. Li, Chem. Eng. J. 358, 718 (2019)

    CAS  Google Scholar 

  21. J. He, X. Yang, G. Zhang, Appl. Therm. Eng. 148, 984 (2019)

    CAS  Google Scholar 

  22. K. Kant, A. Shukla, A. Sharma, Energy Reports 2, 274 (2016)

    Google Scholar 

  23. I. Andrić, A. Pina, P. Ferrão, J. Fournier, B. Lacarrière, O. Le Corre, S. Mengjie, M. Ning, (n.d.)

  24. F. Chen, M. Wolcott, Sol. Energy Mater. Sol. Cells 137, 79 (2015)

    CAS  Google Scholar 

  25. G. Qi, J. Yang, R. Bao, D. Xia, M. Cao, W. Yang, M. Yang, D. Wei, Nano Res. 10, 802 (2017)

    CAS  Google Scholar 

  26. Z. Jiang, T. Ouyang, Y. Yang, L. Chen, X. Fan, Y. Chen, W. Li, Y. Fei, Mater. Des. 143, 177 (2018)

    CAS  Google Scholar 

  27. M. Clausi, I.S. Bayer, Nano Sel. 2, 433 (2021)

    Google Scholar 

  28. S. Azeem, M. Zain-Ul-Abdein, Int. J. Eng. Sci. 52, 30 (2012)

    CAS  Google Scholar 

  29. W. Wang, X. Yang, Y. Fang, J. Ding, J. Yan, Appl. Energy 86, 1196 (2009)

    CAS  Google Scholar 

  30. J. Niu, H. Shi, H. Wei, B. Gao, J.X. Li, F. Xu, X. Li, F. Li, Anal. Chem. 92, 9048 (2020)

    CAS  Google Scholar 

  31. Z. Sun, J. Cao, H. Wu, Z. kun Yin, Int. J. Adv. Manuf. Technol. 98, 2933 (2018)

    Google Scholar 

  32. Z. Meng, C. Ancey, I. Maeder, Z. Meng, C. Ancey, I. Maeder, EGUGA 18230 (2020)

  33. M.F. Buchely, A. Maranon, V.V. Silberschmidt, Int. J. Impact Eng 90, 1 (2016)

    Google Scholar 

  34. B.J. Hipólito-nValencia, E. Rubio-Castro, J.M. Ponce-Ortega, M. Serna-González, F. Nápoles-Rivera, M.M. El-Halwagi, Appl. Therm. Eng. 61, 633 (2013)

    Google Scholar 

  35. M. George, A.K. Pandey, N. Abd Rahim, V.V. Tyagi, S. Shahabuddin, R. Saidur, Sol. Energy 204, 448 (2020)

    CAS  Google Scholar 

  36. D. Li, X. Cheng, Y. Li, H. Zou, G. Yu, G. Li, Y. H.-S. Energy, and undefined 2018, Elsevier (n.d.)

  37. P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, A.A. Balandin, J. Power Sources 248, 37 (2014)

    CAS  Google Scholar 

  38. A.A. Balandin, Nat. Mater. 10, 569 (2011)

    CAS  Google Scholar 

  39. E. Bernardo, L. Fiocco, G. Parcianello, E. Storti, P. Colombo, Materials (Basel). 7, 1927 (2014)

    CAS  Google Scholar 

  40. Z. Han, J. Wood, H. Herman, … C. Z.-C. R. of, and undefined 2008, Ieeexplore.Ieee.Org (n.d.).

  41. S.M. Kong, M. Mariatti, J.J.C. Busfield, J. Reinf. Plast. Compos. 30, 1087 (2011)

    CAS  Google Scholar 

  42. C. Wang, W. Liang, Z. Tang, J. Jia, F. Liu, Y. Yang, H. Sun, Z. Zhu, A. Li, Appl. Clay Sci. 189, 105535 (2020)

    CAS  Google Scholar 

  43. C. Li, B. Xie, J. Chen, Z. He, Z. Chen, Y. Long, Energy Convers. Manag. 183, 633 (2019)

    CAS  Google Scholar 

  44. S. Nižetić, M. Jurčević, M. Arıcı, A.V. Arasu, G. Xie, Renew. Sustain. Energy Rev. 129, 109931 (2020)

    Google Scholar 

  45. M. Jurčević, S. Nižetić, M. Arıcı, A. Hoang Anh Tuan, E. Giama, A. Papadopoulos, Sustain. Energy Technol. Assessments 43, 100957 (2021)

    Google Scholar 

  46. K. Yuan, H. Wang, J. Liu, X. Fang, Z. Zhang, Sol. Energy Mater. Sol. Cells 143, 29 (2015)

    CAS  Google Scholar 

  47. J. Che, M. Jing, D. Liu, K. Wang, Q. Fu, Compos. Part A Appl. Sci. Manuf. 112, 32 (2018)

    CAS  Google Scholar 

  48. K. Kalaitzidou, H. Fukushima, L.T. Drzal, Carbon N. Y. 45, 1446 (2007)

    CAS  Google Scholar 

  49. J. Che, K. Wu, Y. Lin, K. Wang, Q. Fu, Compos. Part A Appl. Sci. Manuf. 99, 32 (2017)

    CAS  Google Scholar 

  50. W. Xia, Z. Liu, Y. Shang, ACS Publ. 6, 10884 (2012)

    Google Scholar 

  51. Y. Li, J. Li, W. Feng, X. Wang, H. Nian, ACS Sustain. Chem. Eng. 5, 7594 (2017)

    CAS  Google Scholar 

  52. M. Chaichi, M. Hashemi, F. Badii, A. Mohammadi, Carbohydr. Polym. 157, 167 (2017)

    CAS  Google Scholar 

  53. R. Ram, V. Soni, D. Khastgir, Compos. Part B Eng. 185, 107748 (2020)

    CAS  Google Scholar 

  54. S. Pal, K. Naskar, Compos. Part B Eng. 176, (2019)

  55. R. Malik, V.K. Tomer, V. Chaudhary, Funct. Graphene Nanocomposites Their Deriv. Synth. Process Appl. (New York, 2018), pp. 323–338

    Google Scholar 

  56. Z.A. Qureshi, H.M. Ali, S. Khushnood, Int. J. Heat Mass Transf. 127, 838 (2018)

    CAS  Google Scholar 

  57. H. Ghasemi Bahraseman, E.M. Languri, J. East, Int. J. Heat Mass Transf. 109, 1052 (2017)

    CAS  Google Scholar 

  58. C. Li, H. Yu, Y. Song, M. Zhao, Renew. Energy 121, 45 (2018)

    CAS  Google Scholar 

  59. fujipoly, 1 (2016)

  60. Thermal Interface Materials For Electronics Cooling Products & Custom Solutions Catalog (n.d.)

  61. (2013)

  62. P. Singla, N. Goel, V. kumar, S. Singhal, Ceram. Int. 41, 10565 (2015)

    CAS  Google Scholar 

  63. B. Chi, Y. Yao, S. Cui, X. Jin, Mater. Lett. 282, 128666 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the School of Materials & Mineral Resources Engineering and Universiti Sains Malaysia for supporting this work and offering the facilities to make research possible through Research University Grant (8014044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mariatti.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 658.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momin, S.A., Mariatti, M. Thermal, electrical, and physical properties of novel phase stabilized material: hybrid plastilina nanocomposites for effective thermal management in electronics. J Mater Sci: Mater Electron 33, 78–94 (2022). https://doi.org/10.1007/s10854-021-07248-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07248-9

Navigation