Skip to main content
Log in

Liquid phase exfoliated WS2 nanosheet-based gas sensor for room temperature NO2 detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Layered transition metal dichalcogenide (TMD) materials possess novel and unique semiconducting properties when exfoliated into thin sheets or individual layers. The exfoliation leads to effective sensing towards gas molecule due to the increase in surface-active sites and edge zone disorders. In this work, we present exfoliation of bulk WS2 sheets with liquid-based dispersion technique using facile bath sonication method for NO2 molecule sensing. The exfoliated WS2 nanosheets show reversible and selective response towards NO2 gas molecules operating at room temperature. The sensitive film shows p-type characteristics providing sensor response rate around 27% for 10 ppm NO2 with rapid response and recovery time around 45 s and 60 s, respectively. The sensitive response was further studied at high temperature of 150 °C showing a drastic increase in response rate as 45% with effective response and recovery time. This improvement in NO2 gas sensing was attributed to the facile exfoliation of WS2 nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.K. Kannan, D.J. Late, H. Morgan, C.S. Rout, Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 7(32), 13293–13312 (2015)

    Article  CAS  Google Scholar 

  2. E. Lee, Y.S. Yoon, D.-J. Kim, Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens. 3(10), 2045–2060 (2018)

    Article  CAS  Google Scholar 

  3. A. Kuc, T. Heine, A. Kis, Electronic properties of transition-metal dichalcogenides. MRS Bull. 40(7), 577–584 (2015)

    Article  CAS  Google Scholar 

  4. A. Kaniyoor, R. Imran Jafri, T. Arockiadoss, S. Ramaprabhu, Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale 1(3), 382–386 (2009)

    Article  CAS  Google Scholar 

  5. P. Karthik, P. Gowthaman, M. Venkatachalam, M. Saroja, Design and fabrication of g-C3N4 nanosheets decorated TiO2 hybrid sensor films for improved performance towards CO2 gas. Inorg. Chem. Commun. 119, 108060 (2020)

    Article  CAS  Google Scholar 

  6. A. Delgado, J.A. Catalan, H. Yamaguchi, C.N. Villarrubia, A.D. Mohite, A.B. Kaul, Characterization of 2D MoS2 and WS2 dispersed in organic solvents for composite applications. MRS Advances 1(32), 2303–2308 (2016)

    Article  CAS  Google Scholar 

  7. H. Li, Z. Yin, Q. He, H. Li, X. Huang, Lu. Gang, D.W.H. Fam, A.I.Y. Tok, Q. Zhang, H. Zhang, Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8(1), 63–67 (2012)

    Article  CAS  Google Scholar 

  8. D. Yang, R.F. Frindt, Li-intercalation and exfoliation of WS2. J. Phys. Chem. Solids 57(6–8), 1113–1116 (1996)

    Article  CAS  Google Scholar 

  9. M. Donarelli, L. Ottaviano, 2D materials for gas sensing applications: a review on graphene oxide, MoS2, WS2 and phosphorene. Sensors 18(11), 3638 (2018)

    Article  CAS  Google Scholar 

  10. W. Sik Hwang, M. Remskar, R. Yan, V. Protasenko, K. Tahy, S.D. Chae, P. Zhao et al., Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl. Phys. Lett. 101(1), 013107 (2012)

    Article  CAS  Google Scholar 

  11. X. Liu, Hu. Jin, C. Yue, N.D. Fera, Y. Ling, Z. Mao, J. Wei, High performance field-effect transistor based on multilayer tungsten disulfide. ACS Nano 8(10), 10396–10402 (2014)

    Article  CAS  Google Scholar 

  12. M. O’Brien, K. Lee, R. Morrish, N.C. Berner, N. McEvoy, C.A. Wolden, G.S. Duesberg, Plasma assisted synthesis of WS2 for gas sensing applications. Chem. Phys. Lett. 615, 6–10 (2014)

    Article  CAS  Google Scholar 

  13. C. Ouyang, Y. Chen, Z. Qin, D. Zeng, J. Zhang, H. Wang, C. Xie, Two-dimensional WS2-based nanosheets modified by Pt quantum dots for enhanced room-temperature NH3 sensing properties. Appl. Surf. Sci. 455, 45–52 (2018)

    Article  CAS  Google Scholar 

  14. F. Perrozzi, S.M. Emamjomeh, V. Paolucci, G. Taglieri, L. Ottaviano, C. Cantalini, Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2. Sens. Actuators B Chem. 243, 812–822 (2017)

    Article  CAS  Google Scholar 

  15. G.A. Asres, J. Baldovi, A. Dombovari, T. Järvinen, G.S. Lorite, M. Mohl, A. Shchukarev et al., Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials. Nano Res. 11(8), 4215–4224 (2018)

    Article  CAS  Google Scholar 

  16. D. Gu, X. Li, H. Wang, M. Li, Yi. Xi, Y. Chen, J. Wang, M.N. Rumyntseva, A.M. Gaskov, Light enhanced VOCs sensing of WS2 microflakes based chemiresistive sensors powered by triboelectronic nangenerators. Sens. Actuators B Chem. 256, 992–1000 (2018)

    Article  CAS  Google Scholar 

  17. Y. Han, Y. Liu, Su. Chen, S. Wang, H. Li, M. Zeng, Hu. Nantao et al., Interface engineered WS2/ZnS heterostructures for sensitive and reversible NO2 room temperature sensing. Sens. Actuators B Chem. 296, 126666 (2019)

    Article  CAS  Google Scholar 

  18. D. Schwela, Air pollution and health in urban areas. Rev. Environ. Health 15(1–2), 13–42 (2000)

    CAS  Google Scholar 

  19. B. Zhu, Xi. Chen, X. Cui, Exciton binding energy of monolayer WS 2. Sci. Rep. 5(1), 1–5 (2015)

    Google Scholar 

  20. J.Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang et al., Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano 9(10), 10313–10323 (2015)

    Article  CAS  Google Scholar 

  21. K.Y. Ko, J.-G. Song, Y. Kim, T. Choi, S. Shin, C.W. Lee, K. Lee et al., Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 10(10), 9287–9296 (2016)

    Article  CAS  Google Scholar 

  22. J.-H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Realization of Au-decorated WS2 nanosheets as low power-consumption and selective gas sensors. Sens. Actuators B Chem. 296, 126659 (2019)

    Article  CAS  Google Scholar 

  23. R.K. Jha, A. Nanda, N. Bhat, Ultrasonication assisted fabrication of a tungsten sulfide/tungstite heterostructure for ppb-level ammonia detection at room temperature. RSC Adv. 10(37), 21993–22001 (2020)

    Article  CAS  Google Scholar 

  24. V. Paolucci, S.M. Emamjomeh, L. Ottaviano, C. Cantalini, Near room temperature light-activated WS2-decorated rGO as NO2 gas sensor. Sensors 19(11), 2617 (2019)

    Article  CAS  Google Scholar 

  25. H. Tang, Y. Li, R. Sokolovskij, L. Sacco, H. Zheng, H. Ye, Yu. Hongyu et al., Ultra-high sensitive NO2 gas sensor based on tunable polarity transport in CVD-WS2/IGZO pN heterojunction. ACS Appl. Mater. Interfaces 11(43), 40850–40859 (2019)

    Article  CAS  Google Scholar 

  26. H.S.S. RamakrishnaMatte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C.N.R. Rao, MoS2 and WS2 analogues of graphene. Angewandte Chemie Int. Edit. 49(24), 4059–4062 (2010)

    Article  CAS  Google Scholar 

  27. A.H. Loo, A. Bonanni, Z. Sofer, M. Pumera, Exfoliated transition metal dichalcogenides (MoS2, MoSe2, WS2, WSe2): an electrochemical impedance spectroscopic investigation. Electrochem. Commun. 50, 39–42 (2015)

    Article  CAS  Google Scholar 

  28. E.D. Grayfer, M.N. Kozlova, V.E. Fedorov, Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation. Adv. Coll. Interface Sci. 245, 40–61 (2017)

    Article  CAS  Google Scholar 

  29. A. O’Neill, U. Khan, J.N. Coleman, Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 24(12), 2414–2421 (2012)

    Article  CAS  Google Scholar 

  30. L. Guardia, J.I. Paredes, R. Rozada, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, Production of aqueous dispersions of inorganic graphene analogues by exfoliation and stabilization with non-ionic surfactants. RSC Adv. 4(27), 14115–14127 (2014)

    Article  CAS  Google Scholar 

  31. A. Bayat, E. Saievar-Iranizad, Synthesis of blue photoluminescent WS2 quantum dots via ultrasonic cavitation. J. Lumin. 185, 236–240 (2017)

    Article  CAS  Google Scholar 

  32. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science (2013). https://doi.org/10.1126/science.1226419

    Article  Google Scholar 

  33. R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill et al., Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23(34), 3944–3948 (2011)

    Article  CAS  Google Scholar 

  34. D. Duphil, S. Bastide, J.C. Rouchaud, J.L. Pastol, B. Legendre, C. Levy-Clement, The chemical synthesis in solution and characterization of transition metal dichalcogenide MX2 (M= Mo, W; X= S, Se) nanoparticles. Nanotechnology 15(7), 828 (2004)

    Article  CAS  Google Scholar 

  35. M. Thripuranthaka, R.V. Kashid, C.S. Rout, D.J. Late, Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets. Appl. Phys. Lett. 104(8), 081911 (2014)

    Article  CAS  Google Scholar 

  36. A. Berkdemir, H.R. Gutiérrez, A.R. Botello-Méndez, N. Perea-López, A.L. Elías, C.-I. Chia, B. Wang et al., Identification of individual and few layers of WS 2 using Raman spectroscopy. Sci. Rep. 3(1), 1–8 (2013)

    Article  CAS  Google Scholar 

  37. W. Liu, J. Benson, C. Dawson, A. Strudwick, A.P.A. Raju, Y. Han, M. Li, P. Papakonstantinou, The effects of exfoliation, organic solvents and anodic activation on the catalytic hydrogen evolution reaction of tungsten disulfide. Nanoscale 9(36), 13515–13526 (2017)

    Article  CAS  Google Scholar 

  38. Y. Lin, B. Adilbekova, Y. Firdaus, E. Yengel, H. Faber, M. Sajjad, X. Zheng et al., 17% efficient organic solar cells based on liquid exfoliated WS2 as a replacement for PEDOT: PSS. Adv. Mater. 31(46), 1902965 (2019)

    Article  CAS  Google Scholar 

  39. L. Di, Z. Tang, Z. Zhang, Comparative study on NO2 and H2S sensing mechanisms of gas sensors based on WS2 nanosheets. Sens. Actuators B Chem. 303, 127114 (2020)

    Article  CAS  Google Scholar 

  40. Z. Qin, D. Zeng, J. Zhang, Wu. Congyi, Y. Wen, B. Shan, C. Xie, Effect of layer number on recovery rate of WS2 nanosheets for ammonia detection at room temperature. Appl. Surf. Sci. 414, 244–250 (2017)

    Article  CAS  Google Scholar 

  41. T. Xu, Y. Liu, Y. Pei, Y. Chen, Z. Jiang, Z. Shi, Xu. Junmin, Wu. Di, Y. Tian, X. Li, The ultra-high NO2 response of ultra-thin WS2 nanosheets synthesized by hydrothermal and calcination processes. Sens. Actuators B Chem. 259, 789–796 (2018)

    Article  CAS  Google Scholar 

  42. M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, L. Ottaviano, Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens. Actuators B Chem. 207, 602–613 (2015)

    Article  CAS  Google Scholar 

  43. T.K. Nguyen, S. Jeong, J.-S. Youn, S. Ahn, K.-H. Nam, C.-M. Park, K.-J. Jeon, Insight into mechanism of temperature-dependent limit of NO2 detection using monolayer MoS2. Sens. Actuators B Chem. 329, 129138 (2021)

    Article  CAS  Google Scholar 

  44. X. Li, X. Li, Z. Li, J. Wang, J. Zhang, WS2 nanoflakes based selective ammonia sensors at room temperature. Sens. Actuators B Chem. 240, 273–277 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Krishna Mohan or M. Navaneethan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon Patrick, D., Bharathi, P., Krishna Mohan, M. et al. Liquid phase exfoliated WS2 nanosheet-based gas sensor for room temperature NO2 detection. J Mater Sci: Mater Electron 33, 9235–9245 (2022). https://doi.org/10.1007/s10854-021-07246-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07246-x

Navigation