Skip to main content
Log in

Electromagnetic interference shielding property of silver nanowires/polymer foams with low thermal conductivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lightweight porous materials have attracted burgeoning interest in recent research on highly effective electromagnetic interference (EMI) shielding materials owing to their tunable density and low thermal conductivity. In this paper, acrylic copolymer (AC)/silver nanowire (AgNW) foams with segregated networks were synthesized by high-speed mechanical mixing followed by a hot-pressing method. As the AgNW volume content was increased from 0.12 vol% to 0.31 vol%, the electrical conductivity of the foams was increased from 0.89 S m−1 to 142.99 S m−1, which is attributed to the presence of a gradually perfect segregated AgNW network. A porous structure surrounded by AgNWs, as well as excellent electrical conductivity, endows the resultant foams with an outstanding EMI shielding effectiveness (SE) that reaches as high as 63 dB and an excellent specific SE (defined by the SE to density ratio) of 180 dB cm3 g−1 in the X-band (8.2 GHz ~ 12.4 GHz). Moreover, the obtained AC/AgNW foams exhibit low and tuneable thermal conductivity, which can be varied from 0.022 W m−1 K−1 to 0.147 W m−1 K−1 by controlling the foam density (0.07 g cm−3–0.35 g cm−3). Lightweight AC/AgNW foams with high EMI SE and low thermal conductivity can be potentially applied in the field of aerospace and wearable smart material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.W. Wei, M.Q. Wang, W.H. Zheng, Z.X. Jiang, Y.D. Huang, Ceram. Int. 46, 6199–6204 (2020)

    Article  CAS  Google Scholar 

  2. Y.H. Zhan, E. Lago, C. Santillo, A.E. Del Río Castillo, S. Hao, G.G. Buonocore, Z.M. Chen, H.S. Xia, M. Lavorgna, F. Bonaccorso, Nanoscale 14, 7782–7791 (2020)

    Article  Google Scholar 

  3. F.Q. Qi, L. Wang, Y.L. Zhang, Z.L. Ma, H. Qiu, J.W. Gu, Mater. Today Phys. 21, 100512 (2021)

    Article  CAS  Google Scholar 

  4. Y.L. Zhang, K.P. Run, J.W. Gu, Small, 2101951 (2021). https://doi.org/10.1002/smll.202101951

  5. H.L. Huang, H. Xia, Z.B. Guo, Y. Chen, H.J. Li, Chin. Poly. B 26, 025207 (2017)

    Article  Google Scholar 

  6. Z.L. Ma, S.L. Kang, J.Z. Ma, L. Shao, Y.L. Zhang, C. Liu, A.J. Wei, X.L. Xiang, L.F. Wei, J.W. Gu, ACS Nano 14, 8368–8382 (2020)

    Article  CAS  Google Scholar 

  7. P. Song, B. Liu, C.B. Liang, K.P. Ruan, H. Qiu, Z.L. Ma, Y.Q. Guo, J.W. Gu, Nano-Micro Lett. 13, 91 (2021)

    Article  CAS  Google Scholar 

  8. Y.H. Zhan, Y.Y. Meng, Q. Xie, J. Appl. Polym. Sci. 138, e50597 (2021)

    Article  Google Scholar 

  9. L.C. Wang, Z.X. Xie, Y.H. Zhan, X.H. Hao, Y.Y. Meng, S. Wei, Z.M. Chen, H.S. Xia, RSC Adv. 11, 18476–18482 (2021)

    Article  CAS  Google Scholar 

  10. Y.H. Zhan, J. Wang, K.Y. Zhang, Y.C. Li, Y.Y. Meng, N. Yan, W.K. Wei, F.B. Peng, H.S. Xia, Chemi. Eng. J. 344, 184–193 (2018)

    Article  CAS  Google Scholar 

  11. Y.H. Zhan, Y.C. Li, Y.Y. Meng, Q. Xie, M. Lavorgna, Polymers 12, 2411 (2020)

    Article  CAS  Google Scholar 

  12. J.K. Pan, Y. Xu, J.J. Bao, J. Appl. Polym. Sci. 135, 46013 (2017)

    Article  Google Scholar 

  13. H. Wang, K. Zheng, X. Zhang, X. Ding, Z.X. Zhang, C. Bao, L. Guo, L. Chen, X.Y. Tian, Compos. Sci. Technol. 125, 22–29 (2016)

    Article  CAS  Google Scholar 

  14. Y. Li, P. Cui, L.Y. Wang, H. Lee, K. Lee, H. Lee, ACS Appl. Mater. Interfaces 5, 9155–9160 (2013)

    Article  CAS  Google Scholar 

  15. B. Zhou, M.J. Su, D.Z. Yang, G.J. Han, Y.Z. Feng, B. Wang, J.L. Ma, J.M. Ma, C.T. Liu, C.Y. Shen, ACS Appl. Mater. Interfaces 12, 40859–40869 (2020)

    Article  Google Scholar 

  16. J.J. Ma, M.S. Zhan, K. Wang, ACS Appl. Mater. Interfaces 7, 563–576 (2015)

    Article  CAS  Google Scholar 

  17. F. Liu, L.Y. Chao, S. Hao, Y. Cheng, Y.H. Zhan, C.M. Zhang, Y.Y. Meng, Q. Xie, H.S. Xia, Carbohyd. Polym. 243, 116467 (2020)

    Article  CAS  Google Scholar 

  18. X.Y. Wu, B.Y. Han, H.B. Zhang, X. Xie, T.X. Tu, Y. Zhang, Y. Dai, R. Yang, Z.Z. Yu, Chem. Eng. J. 381, 122622 (2020)

    Article  CAS  Google Scholar 

  19. Q.J. Xu, T. Song, W. Cui, Y.Q. Liu, W.D. Xu, S.T. Lee, B.Q. Sun, ACS Appl. Mater. Interfaces 7, 3272–3279 (2015)

    Article  CAS  Google Scholar 

  20. Y. Wang, F.Q. Gu, L.J. Ni, K. Liang, K. Marcus, S.L. Liu, F. Yang, J.J. Chen, Z.S. Feng, Nanoscale 9, 18318–18325 (2017)

    Article  CAS  Google Scholar 

  21. Y.H. Zhan, X.H. Hao, L.C. Wang, X.C. Jiang, Y. Cheng, C.Z. Wang, Y.Y. Meng, H.S. Xia, Z.M. Chen, ACS Appl. Mater. Interfaces 13, 14623–14633 (2021)

    Article  CAS  Google Scholar 

  22. Z.H. Zeng, M.J. Chen, Y.M. Pei, S.S.I. Seyed, B.Y. Che, P.Y. Wang, X.H. Lu, ACS Appl. Mater. Interfaces 9, 32211–32219 (2017)

    Article  CAS  Google Scholar 

  23. X. Fan, G.C. Zhang, Q. Gao, J.T. Li, Z.Y. Shang, H.M. Zhang, Y. Zhang, X.T. Shi, J.B. Qin, Chem. Eng. J. 372, 191–202 (2019)

    Article  CAS  Google Scholar 

  24. A. Ameli, M. Nofar, S. Wang, C.B. Park, ACS Appl. Mater. Interfaces 6, 11091–11100 (2014)

    Article  CAS  Google Scholar 

  25. J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, W. Zheng, ACS Appl. Mater. Interfaces 5, 2677–2684 (2013)

    Article  CAS  Google Scholar 

  26. Z.H. Zeng, H. Jin, M.J. Chen, W.W. Li, L.C. Zhou, Z. Zhang, Adv. Funct. Mater. 26, 303–310 (2016)

    Article  CAS  Google Scholar 

  27. G.L. Wang, L. Wang, L.H. Mark, S. Vahid, G.Z. Wang, H.P. Li, G.Q. Zhao, C.B. Park, ACS Appl. Mater. Interfaces 10, 1195–1203 (2018)

    Article  CAS  Google Scholar 

  28. H.M. Zhang, G.C. Zhang, Q. Gao, M. Tang, Z.L. Ma, J.B. Qin, M.Y. Wang, J.K. Kim, Chem. Eng. J. 379, 122304 (2020)

    Article  Google Scholar 

  29. Y.H. Zhan, M. Oliviero, J. Wang, A. Sorrentino, G.G. Buonocore, L.G. Sorrentino, M. Lavorgna, H.S. Xia, S. Iannace, Nanoscale 11, 1011–1020 (2019)

    Article  CAS  Google Scholar 

  30. D.W. Xu, Q.Q. Wang, D. Feng, P.J. Liu, Ind. Eng. Chem. Res. 59, 1934–1943 (2020)

    Article  CAS  Google Scholar 

  31. Y.H. Zhan, Y. Cheng, N. Yan, Y.C. Li, Y.Y. Meng, C.M. Zhang, Z.M. Chen, H.S. Xia, Chem. Eng. J. 417, 129339 (2021)

    Article  CAS  Google Scholar 

  32. H.J. Duan, M.J. Zhao, Y.Q. Yang, G.Z. Zhao, Y.Q. Liu, J. Mater. Sci.: Mater. Electron. 29, 10329–10336 (2018)

    CAS  Google Scholar 

  33. H.X. Zhu, Y.Q. Yang, A. Sheng, H.J. Duan, G.Z. Zhao, Y.Q. Liu, Appl. Surf. Sci. 469, 1–9 (2019)

    Article  CAS  Google Scholar 

  34. L.C. Jia, D.X. Yan, X.F. Liu, R.J. Ma, H.Y. Wu, Z.M. Li, ACS Appl. Mater. Interfaces 10, 11941–11949 (2018)

    Article  CAS  Google Scholar 

  35. T. Kim, C. Park, E.P. Samuel, S. An, A. Aldalbahi, F. Alotaibi, A.L. Yarin, S.S. Yoon, ACS Appl. Mater. Interfaces 13, 10013–10025 (2021)

    Article  CAS  Google Scholar 

  36. T.W. Lee, S.E. Lee, Y.G. Jeong, ACS Appl. Mater. Interfaces 8, 13123–13132 (2016)

    Article  CAS  Google Scholar 

  37. Y.Y. Wang, X. Huang, X.X. Zhang, Nat.Commun. 12, 1291 (2021)

    Article  CAS  Google Scholar 

  38. D. Ghim, J.H. Kim, Korean J. Chem. Eng. 34, 245–248 (2017)

    Article  CAS  Google Scholar 

  39. M.K. Alam, M.T. Islam, M.F. Mina, M.A. Gafur, J. Appl. Polym. Sci. 131, 40421 (2014)

    Google Scholar 

  40. J.P. Li, B. Wang, Z. Ge, R. Cheng, L. Kang, X.M. Zhou, J.S. Zeng, J. Xu, X.J. Tian, W.H. Gao, K.F. Chen, C.Y. Qiu, Z. Cheng, ACS Appl. Mater. Interfaces 11, 39088–39099 (2019)

    Article  CAS  Google Scholar 

  41. C.B. Liang, Y.X. Liu, Y.F. Ruan, H. Qiu, P. Song, J. Kong, H.B. Zhang, J.W. Gu, Compos.  A 139, 106143 (2020)

    Article  Google Scholar 

  42. J. Dong, L. Cao, Y. Li, Z.Q. Wu, C.Q. Teng, Compos. Sci. Technol. 196, 108242 (2020)

    Article  CAS  Google Scholar 

  43. B. Zhou, Q.T. Li, P.H. Xu, Y.Z. Feng, J.M. Ma, C.T. Liu, C.Y. Shen, Nanoscale 13, 2378 (2021)

    Article  CAS  Google Scholar 

  44. Y.Y. Wang, Q.Q. Guo, G.H. Su, J. Cao, J.Z. Liu, X.X. Zhang, Adv. Funct. Mater. 29, 1906198 (2019)

    Article  CAS  Google Scholar 

  45. Z.H. Li, D. Wang, M. Zhang, L. Zhao, Phys. Status Solidi A 211, 2142–2149 (2014)

    Article  CAS  Google Scholar 

  46. F. Re, H. Guo, Z.Z. Guo, Y.L. Jin, H.J. Duan, P.G. Ren, D.X. Yan, Polymers 11, 1486 (2019)

    Article  Google Scholar 

  47. D.W. Lee, J. Park, B.J. Kim, H. Kim, C. Choi, R.H. Baughman, S.J. Kim, Y.T. Kim, Carbon 142, 528–534 (2019)

    Article  CAS  Google Scholar 

  48. L.C. Jia, C.G. Zhou, W.J. Sun, L. Xu, D.X. Yan, Z.M. Li, Chem. Eng. J. 384, 123368 (2020)

    Article  CAS  Google Scholar 

  49. Q.Y. Zhou, J.Y. Lyu, G. Wang, M. Robertson, Z. Qiang, B. Sun, C.H. Ye, M.F. Zhu, Adv. Funct. Mater. 31, 2104536 (2021)

    Article  CAS  Google Scholar 

  50. S. Zhu, Q.Y. Zhou, M.Y. Wang, J. Dale, Z. Qiang, Y.C. Fan, M.F. Zhu, C.H. Ye, Compos. B-Eng. 204, 108497 (2021)

    Article  CAS  Google Scholar 

  51. J. Joo, A.J. Epstein, Appl. Phys. Lett. 65, 2278–2280 (1994)

    Article  CAS  Google Scholar 

  52. J. Liu, H.B. Zhang, Y.F. Liu, Q.W. Wang, Z.S. Liu, Y.W. Mai, Z.Z. Yu, Compos. Sci. Technol. 151, 71–78 (2017)

    Article  CAS  Google Scholar 

  53. Z.H. Zeng, H. Jin, M.J. Chen, W.W. Li, L.C. Zhou, X. Xue, Z. Zhang, Small 13, 1701388 (2017)

    Article  Google Scholar 

  54. Y.Y. Wang, Z.H. Zhou, C.G. Zhou, W.J. Sun, J.F. Gao, K. Dai, D.X. Yan, Z.M. Li, ACS Appl. Mater. Interfaces 12, 8704–8712 (2020)

    Article  CAS  Google Scholar 

  55. H.L. Xu, X.W. Yin, X.L. Li, M.H. Li, S. Liang, L.T. Zhang, L.F. Cheng, ACS Appl. Mater. Interfaces. 11, 10198–10207 (2019)

    Article  CAS  Google Scholar 

  56. X.L. Li, X.W. Yin, H.L. Xu, M.K. Han, M.H. Li, S. Liang, L.F. Cheng, L.T. Zhang, ACS Appl. Mater. Interfaces. 10, 34524–34533 (2018)

    Article  CAS  Google Scholar 

  57. Y.H. Yu, C.C.M. Ma, C.C. Teng, Y.L. Huang, S.H. Lee, I. Wang, M.H. Wei, Mater. Chem. Phys. 136, 334–340 (2012)

    Article  CAS  Google Scholar 

  58. G.A. Gelves, M.H. Al-Saleh, U. Sundararaj, J. Mater. Chem. 21, 829–836 (2011)

    Article  CAS  Google Scholar 

  59. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T. Someya, Nat. Mater. 8, 494–499 (2009)

    Article  CAS  Google Scholar 

  60. H.B. Zhang, Q. Yan, W.G. Zheng, Z.X. He, Z.Z. Yu, ACS Appl. Mater. Interfaces 3, 918–924 (2011)

    Article  CAS  Google Scholar 

  61. X. Fan, G.C. Zhang, J.T. Li, Z.Y. Shang, H.M. Zhang, Q. Gao, J.B. Qin, X.T. Shi, Compos. A: Appl. Sci. Manuf. 121, 64–73 (2019)

    Article  CAS  Google Scholar 

  62. L. Wang, Z.L. Ma, Y.L. Zhang, L.X. Chen, D.P. Cao, J.W. Gu, SusMat 1, 413–431 (2021)

    Article  Google Scholar 

  63. A. Ameli, P.U. Jung, C.B. Park, Carbon 60, 379–391 (2013)

    Article  CAS  Google Scholar 

  64. P. Theilmann, D.J. Yun, P. Asbeck, S.H. Park, Org. Electron 14, 1531–1537 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Shandong Province [ZR2019QEM009]; by International Cooperative Research Program between the National Natural Science Foundation of China and the Italian Ministry of Foreign Affairs [5171101504]; by Guangxi Natural Science Foundation [2020GXNSFBA297139, 2019GXNSFAA245017]; by Opening Project of Guangxi Key Laboratory of Information Materials [201005-K]; and by the doctor`s scientific research foundation of Hezhou University (HZUJS201512).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenming Chen, Chao Yang or Yanhu Zhan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6253.3 kb)

EDS spectra and EDS mapping images of AC/AgNW foams for C, Ag (Fig. S1); XRD curves for AC foam (Fig. S2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Xie, Z., Cai, Y. et al. Electromagnetic interference shielding property of silver nanowires/polymer foams with low thermal conductivity. J Mater Sci: Mater Electron 32, 28394–28405 (2021). https://doi.org/10.1007/s10854-021-07219-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07219-0

Navigation