Skip to main content
Log in

Preparation of sulfur doped TiO2 nanoparticles from rutile sand and their performance testing in hybrid solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new method was adopted to prepare sulfur contained TiO2 nanoparticles extracted from rutile sand by chemical extraction process. The main aim of this work was to reduce the complexity of synthesis processes using a facile, scalable, and economic approach. The advantage of using sulfur dopant in the prepared sample was characterized and compared with the pure TiO2 nanoparticles. The widespread characterization studies revealed that S–TiO2 possesses 15–20 nm crystallite size and a spherical morphology with 95 m2 g−1 surface area. S–TiO2 showed improved optical absorption shifted from the UV to visible region compared to pure TiO2, thereby increasing photogenerated electrons and holes. The S–TiO2 nanoparticles were applied to the hybrid solar cells active layer and the conversion efficiency was increased from 0.62 to 0.97% for pure TiO2 and S–TiO2 solar cells. We used SCAPS 1D for simulation. The photogenerated electrons have a tendency of occupying/recombining with the acceptor defect, that is, hole at the junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Johansson, Security aspects of future renewable energy systems–a short overview. Energy 61(Supplement C), 598–605 (2013)

    Google Scholar 

  2. J. Jean, P.R. Brown, R.L. Jaffe, T. Buonassisi, V. Bulovic, Pathways for solar photovoltaics. Energy Environ. Sci. 8(4), 1200–1219 (2015)

    CAS  Google Scholar 

  3. J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, L.-J. Wan, Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6 %. J. Am. Chem. Soc. 138(12), 4201–4209 (2016)

    CAS  Google Scholar 

  4. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017)

    CAS  Google Scholar 

  5. P.P. Boix, K. Nonomura, N. Mathews, S.G. Mhaisalkar, Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater. Today 17(1), 16–23 (2014)

    CAS  Google Scholar 

  6. S. Yang, W. Fu, Z. Zhang, H. Chen, C.-Z. Li, Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J. Mater. Chem. A 5(23), 11462–11482 (2017)

    CAS  Google Scholar 

  7. N. Depa, H. Erothu, One-Pot three-component synthesis of 3-aminoalkyl indoles catalyzed by molecular iodine. ChemistrySelect 4(33), 9722–9725 (2019)

    CAS  Google Scholar 

  8. L. Lu, T. Zheng, Q. Wu, A.M. Schneider, D. Zhao, L. Yu, Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115, 12666–12731 (2015)

    CAS  Google Scholar 

  9. Z. Chen, G. Yang, X. Zheng, H. Lei, C. Chen, J. Ma, H. Wang, G. Fang, Bulk heterojunction perovskite solar cells based on room temperature deposited hole-blocking layer: suppressed hysteresis and flexible photovoltaic application. J. Power Sources 351, 123–129 (2017)

    CAS  Google Scholar 

  10. D. Mi, J.-H. Kim, H.U. Kim, F. Xu, D.-H. Hwang, Fullerene derivatives as electron acceptors for organic photovoltaic cells. J. Nanosci. Nanotechnol. 14(2), 1064–1084 (2014)

    CAS  Google Scholar 

  11. R. Ajay Kumar, V.G. Vasavi Dutt, C. Rajesh, Mesoporous TiO2 and copper-modified TiO2 nanoparticles: a case study. Eur. Phys. J. Plus 133(2), 60 (2018)

    Google Scholar 

  12. X. Zhang, D. Yang, Z. Yang, X. Guo, B. Liu, X. Ren, S. Liu, Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation. Sci. Rep. 6, 35091 (2016)

    CAS  Google Scholar 

  13. P. Yu, C.-Y. Tsai, J.-K. Chang, C.-C. Lai, P.-H. Chen, Y.-C. Lai, P.-T. Tsai, M.-C. Li, H.-T. Pan, Y.-Y. Huang, C.-I. Wu, Y.-L. Chueh, S.-W. Chen, C.-H. Du, S.-F. Horng, H.-F. Meng, 13 % efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. ACS Nano 7(12), 10780–10787 (2013)

    CAS  Google Scholar 

  14. G. Sauvé, R. Fernando, Beyond fullerenes: designing alternative molecular electron acceptors for solution-processable bulk heterojunction organic photovoltaics. J. Phys. Chem. Lett. 6(18), 3770–3780 (2015)

    Google Scholar 

  15. M. Wright, A. Uddin, Organic—inorganic hybrid solar cells: a comparative review. Sol. Energy Mater. Sol. Cells 107, 87–111 (2012)

    CAS  Google Scholar 

  16. M.J. Dyson, E. Lariou, J. Martin, R. Li, H. Erothu, G. Wantz, P.D. Topham, O.J. Dautel, S.C. Hayes, P.N. Stavrinou, N. Stingelin, Managing local order in conjugated polymer blends via polarity contrast. Chem. Mater. 31(17), 6540–6547 (2019)

    CAS  Google Scholar 

  17. Y. Li, L. Meng, Y. Yang, G. Xu, Z. Hong, Q. Chen, J. You, G. Li, Y. Yang, Y. Li, High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 7, 10214 (2016)

    CAS  Google Scholar 

  18. S. Kurapati, S.S. Gunturi, K.J. Nadella, H. Erothu, Novel solid polymer electrolyte based on PMMA:CH3COOLi effect of salt concentration on optical and conductivity studies. Polym. Bull. 76(10), 5463–5481 (2019)

    CAS  Google Scholar 

  19. N.M. Nursam, X. Wang, R.A. Caruso, High-throughput synthesis and screening of titania-based photocatalysts. ACS Comb. Sci. 17(10), 548–569 (2015)

    CAS  Google Scholar 

  20. C. Santhosh, A. Malathi, E. Daneshvar, P. Kollu, A. Bhatnagar, Photocatalytic degradation of toxic aquatic pollutants by novel magnetic 3D-TiO2@HPGA nanocomposite. Sci. Rep. 8(1), 15531 (2018)

    Google Scholar 

  21. S. Gupta, M. Tripathi, A review of TiO2 nanoparticles. Chin. Sci. Bull. 56(16), 1639–1657 (2011). ((in English))

    CAS  Google Scholar 

  22. R. Manoj, E.S. Andreescu, H. Ding, Nanotechnology for Environmental Decontamination (McGraw-Hill Professional, New York, 2011)

    Google Scholar 

  23. M. Kapilashrami, Y. Zhang, Y.-S. Liu, A. Hagfeldt, J. Guo, Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 114(19), 9662–9707 (2014)

    CAS  Google Scholar 

  24. X. Gong, Y. Jiang, M. Li, H. Liu, H. Ma, Hybrid tapered silicon nanowire/PEDOT:PSS solar cells. RSC Adv. 5(14), 10310–10317 (2015)

    CAS  Google Scholar 

  25. B. Shougaijam, C. Ngangbam, T.R. Lenka, Enhancement of broad light detection based on annealed Al-NPs assisted TiO2-NWs deposited on p-Si by GLAD technique. IEEE Trans. Nanotechnol. 17(2), 285–292 (2018)

    CAS  Google Scholar 

  26. R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: a review. Ind. Eng. Chem. Res. 52(10), 3581–3599 (2013)

    CAS  Google Scholar 

  27. M. Chandrika, A.V. Ravindra, C. Rajesh, S.D. Ramarao, S. Ju, Studies on structural and optical properties of nano ZnFe2O4 and ZnFe2O4-TiO2 composite synthesized by co-precipitation route. Mater. Chem. Phys. 230, 107–113 (2019)

    CAS  Google Scholar 

  28. M. Feilizadeh, M. Vossoughi, S.M.E. Zakeri, M. Rahimi, Enhancement of efficient Ag–S/TiO2 nanophotocatalyst for photocatalytic degradation under visible light. Ind. Eng. Chem. Res. 53(23), 9578–9586 (2014)

    CAS  Google Scholar 

  29. P. Periyat, S.C. Pillai, D.E. McCormack, J. Colreavy, S.J. Hinder, Improved high-temperature stability and sun-light-driven photocatalytic activity of sulfur-doped anatase TiO2. J. Phys. Chem. C 112(20), 7644–7652 (2008)

    CAS  Google Scholar 

  30. P. Goswami, J.N. Ganguli, A novel synthetic approach for the preparation of sulfated titania with enhanced photocatalytic activity. RSC Adv. 3(23), 8878–8888 (2013)

    CAS  Google Scholar 

  31. G. Yang, Z. Yan, T. Xiao, Low-temperature solvothermal synthesis of visible-light-responsive S-doped TiO2 nanocrystal. Appl. Surf. Sci. 258(8), 4016–4022 (2012)

    CAS  Google Scholar 

  32. S. Arunmetha, P. Manivasakan, A. Karthik, N.R. Dhinesh Babu, S.R. Srither, V. Rajendran, Effect of processing methods on physicochemical properties of titania nanoparticles produced from natural rutile sand. Adv. Powder Technol. 24(6), 972–979 (2013)

    CAS  Google Scholar 

  33. M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361-362, 527–532 (2000)

    CAS  Google Scholar 

  34. B. Naik, K.M. Parida, C.S. Gopinath, Facile synthesis of N- and S-incorporated nanocrystalline TiO2 and direct solar-light-driven photocatalytic activity. J. Phys. Chem. C 114(45), 19473–19482 (2010)

    CAS  Google Scholar 

  35. V.V. Pillai, S.P. Lonkar, S.M. Alhassan, Template-free, solid-state synthesis of hierarchically macroporous S-doped TiO2 nano-photocatalysts for efficient water remediation. ACS Omega 5(14), 7969–7978 (2020)

    CAS  Google Scholar 

  36. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile? Model studies on epitaxial TiO2 films. Sci. Rep. 4, 4043 (2014)

    Google Scholar 

  37. M. Rashidzadeh, Synthesis of high-thermal stable titanium dioxide nanoparticles. Int. J. Photoenergy (2008). https://doi.org/10.1155/2008/245981

    Article  Google Scholar 

  38. N. Li, X. Zhang, W. Zhou, Z. Liu, G. Xie, Y. Wang, Y. Du, High quality sulfur-doped titanium dioxide nanocatalysts with visible light photocatalytic activity from non-hydrolytic thermolysis synthesis. Inorg. Chem. Front. 1(7), 521–525 (2014)

    CAS  Google Scholar 

  39. S. Benkoula, O. Sublemontier, M. Patanen, C. Nicolas, F. Sirotti, A. Naitabdi, F. Gaie-Levrel, E. Antonsson, D. Aureau, F.-X. Ouf, S.-I. Wada, A. Etcheberry, K. Ueda, C. Miron, Water adsorption on TiO2 surfaces probed by soft X-ray spectroscopies: bulk materials vs. isolated nanoparticles. Sci. Rep. 5, 15088 (2015)

    CAS  Google Scholar 

  40. G. Liu, C. Sun, S.C. Smith, L. Wang, G.Q. Lu, H.-M. Cheng, Sulfur doped anatase TiO2 single crystals with a high percentage of {001} facets. J. Colloid Interface Sci. 349(2), 477–483 (2010)

    CAS  Google Scholar 

  41. S. Cravanzola, F. Cesano, F. Gaziano, D. Scarano, Sulfur-doped TiO2: structure and surface properties. Catalysts 7(7), 214 (2017)

    Google Scholar 

  42. H. Khan, I.K. Swati, M. Younas, A. Ullah, Chelated nitrogen-sulphur-codoped TiO2: synthesis, characterization, mechanistic, and UV/visible photocatalytic studies. Int. J. Photoenergy 17, 7268641 (2017)

    Google Scholar 

  43. X. Chen, C. Burda, The electronic origin of the visible-light absorption properties of C-, N- and S-Doped TiO2 nanomaterials. J. Am. Chem. Soc. 130(15), 5018–5019 (2008)

    CAS  Google Scholar 

  44. K. Nishijima, B. Ohtani, X. Yan, T. Kamai, T. Chiyoya, T. Tsubota, N. Murakami, T. Ohno, Incident light dependence for photocatalytic degradation of acetaldehyde and acetic acid on S-doped and N-doped TiO2 photocatalysts. Chem. Phys. 339(1–3), 64–72 (2007)

    CAS  Google Scholar 

  45. J. Verschraegen, M. Burgelman, Numerical modeling of intra-band tunneling for heterojunction solar cells in scaps. Thin Solid Films 515(15), 6276–6279 (2007)

    CAS  Google Scholar 

  46. A. Kumar, A.D. Thakur, Role of contact work function, back surface field, and conduction band offset in Cu2ZnSnS4 solar cell. Jpn. J. Appl. Phys. 57(8S3), 08RC05 (2018)

    Google Scholar 

  47. A. Kumar, P. Ranjan, Impact of light soaking on absorber and buffer layer in thin film solar cells. Appl. Phys. A 126, 397 (2020)

    CAS  Google Scholar 

  48. A. Kumar, A.D. Thakur, Comprehensive loss modeling in Cu2ZnSnS4 solar cells. Curr. Appl. Phys. 19(10), 1111–1119 (2019)

    Google Scholar 

  49. K. Deepthi Jayan, V. Sebastian, Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts. Sol. Energy 217, 40–48 (2021)

    CAS  Google Scholar 

  50. A. Kumar, N.P. Singh, A. Sundaramoorthy, Comparative device performance of CZTS solar cell with alternative back contact. Mater. Lett.: X 12, 100092 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the facilities provided by the Centre for Nano Science and Engineering (CeNSE), Indian Institute Science (IISc), Bangalore, and Center of Excellence in Nanoelectronics (CEN), Indian Institute of Technology (IIT), Bombay, under the Indian Nanoelectronics Users Program. The authors also acknowledge the testing facilities provided by The National Centre for Photovoltaic Research and Education (NCPRE) at IIT Bombay, under Photovoltaic Users Mentorship Programme (PUMP). SA acknowledges the SERB, New Delhi, for the award of National Postdoctoral Fellowship (N-PDF) to carry out this research work (File No. PDF/2016/000725).

Author information

Authors and Affiliations

Authors

Contributions

RJ planned and supervised the research work with necessary study materials; SA, the main author, carried out the experiments and investigations. NRD and AK conceived the methodology and reviewed the manuscript. All authors read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to S. Arunmetha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunmetha, S., Dhineshbabu, N.R., Kumar, A. et al. Preparation of sulfur doped TiO2 nanoparticles from rutile sand and their performance testing in hybrid solar cells. J Mater Sci: Mater Electron 32, 28382–28393 (2021). https://doi.org/10.1007/s10854-021-07218-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07218-1

Navigation