Skip to main content

Synthesis and characterization of CeO2 supported ZSM-5 zeolite for organic dye degradation

Abstract

ZSM-5:CeO2 nanocomposites were prepared by two-step hydrothermal method in combination with the wet impregnation method. The synthesized nanocomposites were characterized by XRD, FESEM, TEM, EDX, elemental mapping, FTIR and UV–vis analysis. The bandgap investigations were done using tauc plot and the bandgap of ZSM-5 has been reduced from 3.90 to 3.15 eV upon CeO2 loading. The synthesized nanocomposites were tested for photocatalytic activity under a halogen lamp and the effect of CeO2 loading on ZSM5 has been examined. Among the various nanocomposites synthesized, ZSM-5:CeO2 25 wt% exhibited better methyl orange degradation of about 95.6% with an initial dye concentration of 10 mg/l, pH 7, 100 mg of photocatalyst under halogen lamp for 75 min. Additionally, the effect of various reaction parameters like dye concentration (10–25 mg/l), photocatalyst dosage (25–125 mg), and pH (3–9) was probed to get better performance. Tapping experiments were conducted with various radical scavengers to get insight into the key active species responsible for the photodegradation of methyl orange. The result portrays the importance of hydroxyl radical for the degradation of methyl orange dye. Cycle test and stability studies showed that the photocatalyst was stable even after four cycles. In summary, ZSM-5:CeO2 nanocomposites can be a suitable photocatalyst for numerous applications in the field of photodegradation of organic contaminants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    K.K. Hii, A. Moores, T. Pradeep, B. Sels, D.T. Allen, P. Licence, B. Subramaniam, ACS Sustain. Chem. Eng. 8, 4995 (2020)

    Article  CAS  Google Scholar 

  2. 2.

    M. Bayat, V. Javanbakht, J. Esmaili, Int. J. Biol. Macromol. 116, 607 (2018)

    CAS  Article  Google Scholar 

  3. 3.

    K. Badvi, V. Javanbakht, J. Clean. Prod. 280, 124518 (2021)

    CAS  Article  Google Scholar 

  4. 4.

    F. Aeenjan, V. Javanbakht, Res. Chem. Intermed. 44, 1459 (2018)

    CAS  Article  Google Scholar 

  5. 5.

    M.R. Sabouri, V. Javanbakht, D.J. Ghotbabadi, M. Mehravar, Process Saf. Environ. Prot. 126, 182 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    N. Mao, Advances in Technical Nonwovens (Elsevier Inc., Amsterdam, 2016), pp. 273–310

    Book  Google Scholar 

  7. 7.

    I. Johnson, M. Abubakar, S. Ali, M. Kumar, Microbial Wastewater Treatment (Elsevier, Amsterdam, 2019), pp. 195–236

    Book  Google Scholar 

  8. 8.

    A. Garcia Gutierrez, A.E. McIntyre, R. Perry, J.N. Lester, Sci. Total Environ. 39, 27 (1984)

    CAS  Article  Google Scholar 

  9. 9.

    W. Li, Z. Yang, W. Liang Liu, Z. Hao Huang, H. Zhang, M. Ping Li, X. Hua Ma, C.Y. Tang, Z. Liang Xu, J. Membr. Sci. 618, 118681 (2021)

    CAS  Article  Google Scholar 

  10. 10.

    Y. Wang, Y. He, S. Yan, X. Yin, J. Chen, Colloids Surf. A 582, 123891 (2019)

    CAS  Article  Google Scholar 

  11. 11.

    J. Shen, J. Li, F. Li, H. Zhao, Z. Du, F. Cheng, Chem. Eng. J. 417, 128091 (2021)

    CAS  Article  Google Scholar 

  12. 12.

    M.D. Yadav, Handbook of Nanomaterials for Wastewater Treatment (Elsevier, Amsterdam, 2021), pp. 513–534

    Book  Google Scholar 

  13. 13.

    B. Butter, P. Santander, G.C. del Pizarro, D.P. Oyarzún, F. Tasca, J. Sánchez, J. Environ. Sci. 101, 304 (2021)

    Article  Google Scholar 

  14. 14.

    R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Catal. Today 53, 51 (1999)

    CAS  Article  Google Scholar 

  15. 15.

    X.N. Pham, H.T. Nguyen, T.N. Pham, T.T.B. Nguyen, M.B. Nguyen, V.T.T. Tran, H.V. Doan, J. Taiwan Inst. Chem. Eng. 114, 91 (2020)

    CAS  Article  Google Scholar 

  16. 16.

    X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110, 6503 (2010)

    CAS  Article  Google Scholar 

  17. 17.

    R. Kaur, A. Talan, B. Tiwari, S. Pilli, B. Sellamuthu, R.D. Tyagi, Current Developments in Biotechnology and Bioengineering (Elsevier, Amsterdam, 2020), pp. 87–140

    Book  Google Scholar 

  18. 18.

    L.G. Devi, R. Kavitha, Appl. Catal. B 140–141, 559 (2013)

    Article  CAS  Google Scholar 

  19. 19.

    W. Zhang, F. Bi, Y. Yu, H. He, J. Mol. Catal. A Chem. 372, 6 (2013)

    CAS  Article  Google Scholar 

  20. 20.

    Z. Ghasemi, H. Younesi, A.A. Zinatizadeh, Chemosphere 159, 552 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    S. Aanchal, Barman, S. Basu, Chemosphere 241, 124981 (2020)

    CAS  Article  Google Scholar 

  22. 22.

    F. Haque, T. Daeneke, K. Kalantar-zadeh, J.Z. Ou, Nano-Micro Lett. 10, 23 (2018)

    Article  CAS  Google Scholar 

  23. 23.

    M. Bellardita, R. Fiorenza, L. Palmisano, S. Scirè, Cerium Oxide (CeO2): Synthesis, Properties and Applications (Elsevier, Amsterdam, 2020), pp. 109–167

    Book  Google Scholar 

  24. 24.

    Z. Vaez, V. Javanbakht, J. Photochem. Photobiol. A 388, 112064 (2020)

    Article  CAS  Google Scholar 

  25. 25.

    M. Greluk, M. Rotko, S. Turczyniak-Surdacka, Renew. Energy 155, 378 (2020)

    CAS  Article  Google Scholar 

  26. 26.

    A.S. Munasir, D.H. Dewanto, N.P. Kusumawati, A. Putri, I.K.F. Yulianingsih, A. Sa’Adah, N. Taufiq, S. Hidayat, Sunaryono, Z. A. I. Supardi, in IOP Conference Series: Materials Science and Engineering (Institute of Physics Publishing, 2018), p. 012010

  27. 27.

    A.C. Anil, K. Govindan, M. Rangarajan, in IOP Conference Series: Materials Science and Engineering (IOP Publishing Ltd, 2019), p. 012153

  28. 28.

    Z.G.L.V. Sari, H. Younesi, H. Kazemian, Appl. Nanosci. (Switzerland) 5, 737 (2015)

    CAS  Article  Google Scholar 

  29. 29.

    A.A. Ismail, R.M. Mohamed, O.A. Fouad, I.A. Ibrahim, Cryst. Res. Technol. 41, 145 (2006)

    CAS  Article  Google Scholar 

  30. 30.

    Y. Cheng, L.J. Wang, J.S. Li, Y.C. Yang, X.Y. Sun, Mater. Lett. 59, 3427 (2005)

    CAS  Article  Google Scholar 

  31. 31.

    E.K. Radwan, C.H. Langford, G. Achari, R. Soc. Open Sci. 5, 180918 (2018)

    Article  CAS  Google Scholar 

  32. 32.

    G.R. Anindika, Y. Kusumawati, D. Prasetyoko, W.B. Widayatno, A. Hamid, in AIP Conference Proceedings (American Institute of Physics Inc., 2020), p. 020052

  33. 33.

    X.H. Vu, U. Armbruster, Adv. Mater. Sci. Eng. (2019). https://doi.org/10.1155/2019/3198421

    Article  Google Scholar 

  34. 34.

    J. Pérez-Ramírez, C.H. Christensen, K. Egeblad, C.H. Christensen, J.C. Groen, Chem. Soc. Rev. 37, 2530 (2008)

    Article  CAS  Google Scholar 

  35. 35.

    W. Schwieger, A.G. Machoke, T. Weissenberger, A. Inayat, T. Selvam, M. Klumpp, A. Inayat, Chem. Soc. Rev. 45, 3353 (2016)

    CAS  Article  Google Scholar 

  36. 36.

    X.H. Vu, U. Armbruster, A. Martin, Catalysts 6, 183 (2016)

    Article  CAS  Google Scholar 

  37. 37.

    N. Taufiqurrahmi, A.R. Mohamed, S. Bhatia, Biores. Technol. 102, 10686 (2011)

    CAS  Article  Google Scholar 

  38. 38.

    A. Ishihara, D. Kawaraya, T. Sonthisawate, K. Kimura, T. Hashimoto, H. Nasu, J. Mol. Catal. A Chem. 396, 310 (2015)

    CAS  Article  Google Scholar 

  39. 39.

    M. Ahmad, A.R.A. Aziz, S.A. Mazari, A.G. Baloch, S. Nizamuddin, Environ. Sci. Pollut. Res. 2020 27, 21 (2020)

    Google Scholar 

  40. 40.

    H. Znad, K. Abbas, S. Hena, M.R. Awual, J. Environ. Chem. Eng. 6, 218 (2018)

    CAS  Article  Google Scholar 

  41. 41.

    A.N. Ökte, Ö Yilmaz, Appl. Catal. A 354, 132 (2009)

    Article  CAS  Google Scholar 

  42. 42.

    A. NerenÖkte, Ö Yilmaz, Appl. Catal. B 85, 92 (2008)

    Article  CAS  Google Scholar 

  43. 43.

    J. Liu, L. Zhang, Y. Sun, Y. Luo, Nanomaterials 11, 1104 (2021)

    CAS  Article  Google Scholar 

  44. 44.

    J. Luo, X. Zhou, L. Ma, X. Xu, RSC Adv. 5, 68728 (2015)

    CAS  Article  Google Scholar 

  45. 45.

    K.M. Reza, A. Kurny, F. Gulshan, Appl. Water Sci. 7, 1569 (2017)

    CAS  Article  Google Scholar 

  46. 46.

    A. Gnanaprakasam, V.M. Sivakumar, M. Thirumarimurugan, Indian J. Mater. Sci. 2015, 1 (2015)

    Article  Google Scholar 

  47. 47.

    A. Silambarasan, H.P. Kavitha, S. Ponnusamy, M. Navaneethan, Y. Hayakawa, Appl. Catal. A 476, 1 (2014)

    CAS  Article  Google Scholar 

  48. 48.

    N. Venkatachalam, M. Palanichamy, B. Arabindoo, V. Murugesan, J. Mol. Catal. A Chem. 266, 158 (2007)

    CAS  Article  Google Scholar 

  49. 49.

    B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo, V. Murugesan, J. Hazard. Mater. 89, 303 (2002)

    CAS  Article  Google Scholar 

  50. 50.

    S. Sohrabnezhad, A. Pourahmad, E. Radaee, J. Hazard. Mater. 170, 184 (2009)

    CAS  Article  Google Scholar 

  51. 51.

    X. Zhang, F. Wu, X.W. Wu, P. Chen, N. Deng, J. Hazard. Mater. 157, 300 (2008)

    CAS  Article  Google Scholar 

  52. 52.

    H.S. Hilal, G.Y.M. Nour, A.H. Zyoud, in Water Purification, 1st edn., ed. by N. Gertsen, L. Sønderby (Nova Science Publishers, Inc., Hauppauge, 2009)

    Google Scholar 

  53. 53.

    Z. Wang, L. Shen, S. Zhu, Int. J. Photoenergy (2012). https://doi.org/10.1155/2012/202519

    Article  Google Scholar 

  54. 54.

    A. Zyoud, A. Zu’bi, M.H.S. Helal, D.H. Park, G. Campet, H.S. Hilal, J. Environ. Health Sci. Eng. 13, 1 (2015)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this study through the Small Research Group Project under grant number R.G.P. 1/306/1442.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to N. Elumalai, R. Ramesh, A. Silambarasan or M. Navaneethan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prabhu, S., Elumalai, N., Selvaraj, M. et al. Synthesis and characterization of CeO2 supported ZSM-5 zeolite for organic dye degradation. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-07216-3

Download citation