Skip to main content

Advertisement

Log in

Synthesis of alkali and acid-mediated rGO–metakaolin nano composites for supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Two different samples of metakaolin one hardened by acid (10 M phosphoric acid) (MP) and another by alkali (Na2SiO3 of silica modulus 1.1) (MS) are reinforced with reduced graphene oxide (rGO) to form nanocomposites (MPr and MSr) and their macrostructural, microstructural and electrochemical properties are investigated. The presence of polymerised aluminosilicates and alumino-silico phosphates are conclusively proved from XRD. The FTIR spectral analysis of the composites and the synthesized cement were also performed. The results confirmed that the addition of an optimal dose of rGO at 2% does not affect the existing gel network of the final product. However, reinforcement by rGO improved the microstructure as seen from the scanning electron microscopy (SEM) analysis of both MP and MS and also resulted in a strength gain of nearly to 10–12% at all ages of curing (1–28 days). The maximum compressive strength attained at 28 days curing in the MPr sample is 79.15 MPa. The electrochemical properties have been studied through cyclic voltammetry and electrochemical impedance spectroscopy and the results are compared. CV curves are symmetrical but slightly deformed, which indicate a good capacitive behaviour. The specific conductance of MPr and MSr is 53.2 F/g and 42.5 F/g, respectively, which is comparatively higher than that of the geopolymer cement, MP (48.27 F/g) and MS (37.5 F/g). The performance of phosphoaluminate sample is better than the alkali-activated sample due to multiple ionic compositions that form Al–O–P units and Si–O–T (T = Si, Al, P) in the network. The conductive mechanism is predominantly governed by ion drift which can be explained through electrolyte distribution in the matrix via pore/channels in addition to fast conducting H+ ions in the phosphoaluminate. The synergistic effect of rGO–metakaolin geopolymers with a desirable compressive strength balanced by good electrochemical properties gives the newly formed material greater potential for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Gao, L. Shen, M. Shen, F. Chen, L. Liu, L. Gao, Analysis on differences of carbon dioxide emission from cement production and their major determinants. J. Clean. Prod. 103, 160–170 (2015). https://doi.org/10.1016/j.jclepro.2014.11.026

    Article  CAS  Google Scholar 

  2. A. Teklay, C. Yin, L. Rosendahl, Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcines: a way to reduce CO2 footprint from cement industry. Appl. Energy 162, 1218–1224 (2015). https://doi.org/10.1016/j.apenergy.2015.04.127

    Article  CAS  Google Scholar 

  3. Y.-S. Wang, Y. Alrefaei, J.-G. Dai, Silico-aluminophosphate and alkali-aluminosilicate geopolymers: a comparative review. Front. Mater. 6, 106 (2019). https://doi.org/10.3389/fmats.2019.00106

    Article  Google Scholar 

  4. M.B. Mohd Salahuddin, M. Norkhairunnisa, F. Mustapha, A review on thermophysical evaluation of alkali-activated geopolymers. Ceram. Int. 41(3), 4273–4281 (2015). https://doi.org/10.1016/j.ceramint.2014.11.119

    Article  CAS  Google Scholar 

  5. J.L. Provis, Geopolymers and other alkali activated materials: why, how, and what?”. Mater. Struct. 47, 11–25 (2014). https://doi.org/10.1617/s11527-013-0211-5

    Article  CAS  Google Scholar 

  6. M.R. Wang, D.C. Jia, P.G. He, Y. Zhou, Influence of calcination temperature of kaolin on the structure and properties of final geopolymer. Mater. Lett. 64, 2551–2554 (2010). https://doi.org/10.1016/j.matlet.2010.08.007

    Article  CAS  Google Scholar 

  7. L. Mtiaz, S.K. Ur Rehman, S.A. Memon, M.K. Khan, M.F. Javed, A review of recent developments and advances in eco-friendly geopolymer concrete. Appl. Sci. 10(21), 1–56 (2020). https://doi.org/10.3390/app10217838

    Article  CAS  Google Scholar 

  8. E.I. Diaz, E.N. Allouche, S. Eklund, Factors affecting the suitability of fly ash as source material for geopolymers. Fuel 89, 992–996 (2010). https://doi.org/10.1016/j.fuel.2009.09.012

    Article  CAS  Google Scholar 

  9. M.S. Karuppannan, C. Palanisamy, M.S. Mohammed Farook, M. Natarajan, Study on fly ash and GGBS based oven cured geopolymer concrete. AIP Conf. Proc. 2240, 060001 (2020). https://doi.org/10.1063/5.0011023

    Article  CAS  Google Scholar 

  10. A. Albidah, M. Alghannam, H. Abbas, T. Almusallam, Y. Al-salloum, Characteristics of metakaolin-based geopolymer concrete for different mix design parameters. J. Mater. Res. Technol. 10, 84–98 (2021). https://doi.org/10.1016/j.jmrt.2020.11.104

    Article  CAS  Google Scholar 

  11. Q. Sun, J. Liu, Fabrication of 3D structures via direct ink writing f kaolin/graphene oxide composite suspensions at ambient temperature. Ceram. Int. 45, 18972–189979 (2019). https://doi.org/10.1016/j.ceramint.2019.06.136

    Article  CAS  Google Scholar 

  12. N. Ye, Y. Chen, J. Yang, S. Liang, Y. Hu, B. Xiao, X. Wu, Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system. J. Hazard. Mater. 318, 70–78 (2016). https://doi.org/10.1016/j.jhazmat.2016.06.042

    Article  CAS  Google Scholar 

  13. K. Behfarnia, N. Salemi, The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Constr. Build. Mater. 48, 580–584 (2013). https://doi.org/10.1016/j.conbuildmat.2013.07.088

    Article  Google Scholar 

  14. S. Lu, X. Wang, Z. Meng, Q. Deng, F. Peng, C. Yu, X. Hu, Y. Zhao, Y. Ke, F. Qi, The mechanical properties, microstructures and mechanism of carbon nanotube-reinforced oil well cement-based nanocomposites. RSC Adv. 9, 26691–26702 (2019). https://doi.org/10.1039/c9ra04723a

    Article  CAS  Google Scholar 

  15. K. Gong, Z. Pan, A.H. Korayem, L. Qiu, D. Li, F. Collins, W.H. Duan, Reinforcing effects of graphene oxide on Portland cement paste. J. Mater. Civ. Eng. 27(2), A4014010 (2015). https://doi.org/10.1061/(asce)mt.1943-5533.0001125

    Article  Google Scholar 

  16. T. Huang, Z. Sun, Advances in multifunctional graphene–geopolymer composites. Constr. Build. Mater. 272, 121619 (2021)

    Article  CAS  Google Scholar 

  17. A. Mohajerani, D. Suter, T. Jeffrey-Bailey, T. Song, A. Arulrajah, S. Horpibulsuk, D. Law, Recycling waste materials in geopolymer concrete. Clean Technol. Environ. Policy (2019). https://doi.org/10.1007/s10098-018-01660-2

    Article  Google Scholar 

  18. E. Rabiaa, R.A.S. Mohamed, W.H. Sofi, T.A. Tawfik, Developing geopolymer concrete properties by using nanomaterials and steel fibers. Adv. Mater. Sci. Eng. 2020, 1–12 (2020). https://doi.org/10.1155/2020/5186091

    Article  CAS  Google Scholar 

  19. X.J. Lee, B.Y.Z. Hiew, K.C. Lai, L.Y. Lee, S. Gan, S. Thangalazhy-Gopakumar, S. Rigby, Review on graphene and its derivatives: synthesis methods and potential industrial implementation. J. Taiwan Inst. Chem. Eng. (2018). https://doi.org/10.1016/j.jtice.2018.10.028

    Article  Google Scholar 

  20. A. Anwar, B.S. Mohammed, M.B. AbdulWahab, M.S. Liew, Enhanced properties of cementitious composite tailored with graphene oxide nanomaterial—a review. Dev. Built Environ. (2019). https://doi.org/10.1016/j.dibe.2019.100002

    Article  Google Scholar 

  21. H. Zhao, K. Min, N.R. Aluru, Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 9(8), 3012–3015 (2009). https://doi.org/10.1021/nl901448z

    Article  CAS  Google Scholar 

  22. S. Panda, T.K. Rout, A.D. Prusty, P.M. Ajayan, S. Nayak, Electron transfer directed antibacterial properties of graphene oxide on metals. Adv. Mater. 30(7), 1702149 (2018). https://doi.org/10.1002/adma.201702149

    Article  CAS  Google Scholar 

  23. T. Wang, M.D.J. Quinn, S.M. Notley, Enhanced electrical, mechanical and thermal properties by exfoliating graphene platelets of larger lateral dimensions. Carbon 129, 191–198 (2018). https://doi.org/10.1016/j.carbon.2017.12.034

    Article  CAS  Google Scholar 

  24. P.-H. Shih, T.-N. Do, G. Gumbs, M.-F. Lin, Electronic and optical properties of doped graphene. Physica E 118, 113894 (2020). https://doi.org/10.1016/j.physe.2019.113894

    Article  CAS  Google Scholar 

  25. S. Javanbakht, H. Namazi, Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater. Sci. Eng. C 87, 50–59 (2018). https://doi.org/10.1016/j.msec.2018.02.010

    Article  CAS  Google Scholar 

  26. Y. Qian, I.M. Ismail, A. Stein, Ultralight, high-surface-area, multifunctional graphene-based aerogels from self-assembly of graphene oxide and resol. Carbon 68, 221–231 (2014). https://doi.org/10.1016/j.carbon.2013.10.082

    Article  CAS  Google Scholar 

  27. Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, Y. Chen, Room-temperature ferromagnetism of graphene. Nano Lett. 9(1), 220–224 (2009). https://doi.org/10.1021/nl802810g

    Article  CAS  Google Scholar 

  28. R. He, N. Dai, Z. Wang, Thermal and mechanical properties of geopolymers exposed to high temperature: a literature review. Adv. Civ. Eng. 2020, 1–17 (2020). https://doi.org/10.1155/2020/7532703

    Article  Google Scholar 

  29. M. Pengou, B. Ngouné, H.K. Tchakouté, C.P.N. Nanseu, E. Ngameni, Utilization of geopolymer cements as supercapacitors: influence of the hardeners on their properties. SN Appl. Sci. (2020). https://doi.org/10.1007/s42452-020-2939-1

    Article  Google Scholar 

  30. W. Ma, D. Zhang, Multifunctional structural supercapacitor based on graphene and magnesium phosphate cement. J. Compos. Mater. (2018). https://doi.org/10.1177/0021998318790322

    Article  Google Scholar 

  31. J. Xu, D. Zhang, Multifunctional structural supercapacitor based on graphene and geopolymer. Electrochim. Acta 224, 105–112 (2017). https://doi.org/10.1016/j.electacta.2016.12.045

    Article  CAS  Google Scholar 

  32. M. Saafi, L. Tang, J. Fung, M. Rahman, F. Sillars, J. Liggat, X. Zhou, Graphene/fly ash geopolymeric composites as self-sensing structural materials. Smart Mater. Struct. 23(6), 65006 (2014)

    Article  CAS  Google Scholar 

  33. S. Yan, P. He, D. Jia, Z. Yang, X. Duan, S. Wang, Y. Zhou, Effect of reduced graphene oxide content on the microstructure and mechanical properties of graphene–geopolymer nanocomposites. Ceram. Int. 42(1), 752–758 (2016). https://doi.org/10.1016/j.ceramint.2015.08.176

    Article  CAS  Google Scholar 

  34. H.K. Tchakouté, C.H. Rüscher, E. Kamseu, F. Andreola, C. Leonelli, Influence of the molar concentration of phosphoric acid solution on the properties of metakaolin-phosphate-based geopolymer cements. Appl. Clay Sci. 147, 184–194 (2017)

    Article  Google Scholar 

  35. L. Chen, Z. Wang, Y. Wang, J. Feng, Preparation and properties of alkali activated metakaolin-based geopolymer. Materials 9(9), 767 (2016). https://doi.org/10.3390/ma9090767

    Article  CAS  Google Scholar 

  36. J. Baril, J.J. Max, C. Chapados, Infrared titration of phosphoric acid. Can. J. Chem. 78(4), 490–507 (2000)

    Article  CAS  Google Scholar 

  37. M. Saafi, L. Tang, J. Fung, M. Rahman, J. Liggat, Enhanced properties of graphene/fly ash geopolymeric composite cement. Cem. Concr. Res. 67, 292–299 (2015). https://doi.org/10.1016/j.cemconres.2014.08.011

    Article  CAS  Google Scholar 

  38. S. Yan, P. He, D. Jia, X. Duan, Z. Yang, S. Wang, Y. Zhou, Effects of graphene oxide on the geopolymerization mechanism determined by quenching the reaction at intermediate states. RSC Adv. 7(22), 13498–13508 (2017). https://doi.org/10.1039/c6ra26340b

    Article  CAS  Google Scholar 

  39. S. Partschefeld, T. Wiegand, F. Bellmann, A. Osburg, Formation of geopolymers using sodium silicate solution and aluminum orthophosphate. Materials 13(18), 4202 (2020). https://doi.org/10.3390/ma13184202

    Article  CAS  Google Scholar 

  40. R. Irfanita, S.S. Desa, M.R. Fahlefy, S. Wahyuni, U. Athiyyah et al., The influence of reduced graphene oxide nanoparticles (rGO NPs) on the microstructure of metakaolin geopolymer. IOP Conf. Ser. Mater. Sci. Eng. 864, 012043 (2020). https://doi.org/10.1088/1757-899x/864/1/012043

    Article  CAS  Google Scholar 

  41. Y.J. Zhang, P.Y. He, Y.X. Zhang, H. Chen, A novel electroconductive graphene/fly ashbased geopolymer composite and its photocatalytic performance. Chem. Eng. J. (2017). https://doi.org/10.1016/j.cej.2017.11.171

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the utilization of facilities provided by DST-FIST, Department of Chemistry and SEM facility by NRC, SRM Institute of Science and Technology, Kattankulathur, India. Authors thank the authorities of SRMIST for funding to the research scholars.

Funding

This work was supported by the Department of Science and Technology, the Government of India (GOI), under the Grant DST/TDT/WMT/2017 14/03/18, GOI.

Author information

Authors and Affiliations

Authors

Contributions

TR: Investigation, Data curation, Resources and Writing. KJ: Investigation, Methodology, Data curation and Original draft preparation. RJ: Conceptualization, Editing and Supervision, Funding acquisition.

Corresponding author

Correspondence to R. Jeyalakshmi.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revathi, T., Janani, K. & Jeyalakshmi, R. Synthesis of alkali and acid-mediated rGO–metakaolin nano composites for supercapacitor application. J Mater Sci: Mater Electron 33, 9163–9179 (2022). https://doi.org/10.1007/s10854-021-07211-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07211-8

Navigation