Skip to main content
Log in

Influence of TiO2 conjunct with different g–C3N4 mass ratios on photocatalytic activity: visible and UV degradation of organic pollutant

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, heterojunction photocatalytic materials have received more and more attention. Ball milling and microwave–assisted heating were used in this work to prepare the g–C3N4/TiO2 heterojunction photocatalytic nanocomposites with different g–C3N4/TiO2 mass ratios (0.5:1, 1:1, 2.5:1, 5:1, 10:1, 20:1, 30:1, and 40:1, labeled as TCN–1, TCN–2, TCN–3, TCN–4, TCN–5, TCN–6, TCN–7, and TCN–8, respectively). The crystal structure, morphology, and optical properties of the samples were characterized by various analytical techniques. The photocatalytic activity was evaluated by the degradation efficiency of Rhodamine B (RhB) and methylene blue (MB) under visible light and UV irradiation. After 120 min at visible light illumination, TCN–7 had the best degradation efficiency with 99.41% for RhB and 91.75% for MB, whereas after 120 min at UV light illumination, TCN–7 exhibited the best degradation effect, and the efficiency reached at 48.66% for RhB and 71.64% for MB, respectively. The analysis of crystal structure of the as–prepared TCN samples confirmed that TCN–7 has a good crystallinity, which is facilitated for photocatalytic activity. In photocatalytic reactions, superoxide radical (·O2), hydroxyl radical (·OH), and hole (h+) are recognized as the main active groups, and ·O2 plays the main role for TCN–7 in the photocatalytic reaction system for the degradation of RhB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H. Mittal, A.A. Alili, P.P. Morajkar, S.M. Alhassan, Int. J. Biol. Macromol. (2021). https://doi.org/10.1016/j.ijbiomac.2020.11.079

    Article  Google Scholar 

  2. M.A. Ahmad, N.A.B. Ahmed, K.A. Adegoke, O.S. Bello, Chem. Data Collect. (2021). https://doi.org/10.1016/j.cdc.2020.100578

    Article  Google Scholar 

  3. S.S. Nayak, N.A. Mirgane, V.S. Shivankar, K.B. Pathade, G.C. Wadhawa, Mater. Today (2020). https://doi.org/10.1016/j.matpr.2020.07.728

    Article  Google Scholar 

  4. K.R.E. Reyes, P.-W. Tsai, L.L. Tayo, C.-C. Hsueh, B.-Y. Chen, Process Biochem. (2021). https://doi.org/10.1016/j.procbio.2020.11.006

    Article  Google Scholar 

  5. T. Shahnaz, V. Sharma, S. Subbiah, S. Narayanasamy, J. Water Process. Eng. (2020). https://doi.org/10.1016/j.jwpe.2020.101283

    Article  Google Scholar 

  6. V. Sharma, T. Shahnaz, S. Subbiah, S. Narayanasamy, J. Polym. Environ. (2020). https://doi.org/10.1007/s10924-020-01740-9

    Article  Google Scholar 

  7. S.V. Manjunath, B.K. Tripathy, M. Kumar, S. Pramod, J. Environ. Chem. Eng. (2020). https://doi.org/10.1016/j.jece.2020.104486

    Article  Google Scholar 

  8. K.B. Tan, M. Vakili, B.A. Horri, P.E. Poh, A.Z. Abdullah, B. Salamatinia, Sep. Purif. Technol. (2015). https://doi.org/10.1016/j.seppur.2015.07.009

    Article  Google Scholar 

  9. P. Mandal, K. K. Nath, M. Saha, Biointerface Res. Appl. Chem. (2021) https://doi.org/10.33263/briac111.81718178

  10. K. Solanki, S. Subramanian, S. Basu, Biores. Technol. (2013). https://doi.org/10.1016/j.biortech.2012.12.063

    Article  Google Scholar 

  11. M.A. Ahmed, N.M. Abdelbar, A.A. Mohamed, Int. J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2017.09.082

    Article  Google Scholar 

  12. H. Mittal, R. Babu, S.M. Alhassan, Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.008

    Article  Google Scholar 

  13. S. Sangon, A.J. Hunt, T.M. Attard, P. Mengchang, Y. Ngernyen, N. Supanchaiyamat, J. Clean. Prod. (2018). https://doi.org/10.1016/j.jclepro.2017.10.210

    Article  Google Scholar 

  14. E. David, J. Kopac, Mater. Today (2019). https://doi.org/10.1016/j.matpr.2018.12.080

    Article  Google Scholar 

  15. B. Bharathiraja, I.A.E. Selvakumari, J. Iyyappan, S. Varjani, Curr. Opin. Environ. Sci. Health (2019). https://doi.org/10.1016/j.coesh.2019.07.004

    Article  Google Scholar 

  16. M. Tichonovas, E. Krugly, V. Racys et al., Chem. Eng. J. (2013). https://doi.org/10.1016/j.cej.2013.05.095

    Article  Google Scholar 

  17. R. Saravanan, V.K. Gupta, V. Narayanan, A. Stephen, J. Taiwan Inst. Chem. Eng. (2014). https://doi.org/10.1016/j.jtice.2013.12.021

    Article  Google Scholar 

  18. S.V. Manjunath, R.S. Baghel, M. Kumar, Environ. Technol. Innov. (2019). https://doi.org/10.1016/j.eti.2019.100478

    Article  Google Scholar 

  19. A. Mittal, M. Teotia, R.K. Soni, J. Mittal, J. Mol. Liq. (2016). https://doi.org/10.1016/j.molliq.2016.08.065

    Article  Google Scholar 

  20. X. Xie, X. Zheng, C. Yu et al., RSC Adv. (2019). https://doi.org/10.1039/C9RA04507D

    Article  Google Scholar 

  21. I. Anastopoulos, A. Mittal, M. Usman et al., J. Mol. Liq. (2018). https://doi.org/10.1016/j.molliq.2018.08.104

    Article  Google Scholar 

  22. S. Ameenudeen, S. Unnikrishnan, K. Ramalingam, J. Environ. Manag. (2021). https://doi.org/10.1016/j.jenvman.2020.111512

    Article  Google Scholar 

  23. D.A. Yaseen, M. Scholz, Environ. Sci. Pollut. Res. (2018). https://doi.org/10.1007/s11356-017-0633-7

    Article  Google Scholar 

  24. S. Soni, P.K. Bajpai, J. Mittal, C. Arora, J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.113642

    Article  Google Scholar 

  25. B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Biotechnol. Res. Innov. (2019). https://doi.org/10.1016/j.biori.2019.09.001

    Article  Google Scholar 

  26. H. Demissie, G. An, R. Jiao, T. Ritigala, S. Lu, D. Wang, Sep. Purif. Technol. (2021). https://doi.org/10.1016/j.seppur.2020.117845

    Article  Google Scholar 

  27. M.M. Hassan, C.M. Carr, Chemosphere (2018). https://doi.org/10.1016/j.chemosphere.2018.06.043

    Article  Google Scholar 

  28. A.P. Naik, A.V. Salkar, M.S. Majik, P.P. Morajkar, Photochem. Photobiol. Sci. (2017). https://doi.org/10.1039/c7pp00090a

    Article  Google Scholar 

  29. Y. Bu, J. Ren, H. Zhang, D. Yang, Z. Chen, J. Ao, J. Mater. Chem. A (2018). https://doi.org/10.1039/C8TA00796A

    Article  Google Scholar 

  30. E.L. Tsege, S.K. Cho, L.T. Tufa et al., J. Mater. Sci. (2018). https://doi.org/10.1007/s10853-017-1711-4

    Article  Google Scholar 

  31. R. Huo, X. Yang, J. Yang, S. Yang, Y. Xu, Mater. Res. Bull. (2018). https://doi.org/10.1016/j.materresbull.2017.10.016

    Article  Google Scholar 

  32. H.J. Yan, H.X. Yang, J. Alloys Compd. (2011). https://doi.org/10.1016/j.jallcom.2010.09.201

    Article  Google Scholar 

  33. W. Shi, H. Ren, M. Li et al., Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.122876

    Article  Google Scholar 

  34. A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. (1995). https://doi.org/10.1021/cr00035a013

    Article  Google Scholar 

  35. X. Chen, S.S. Mao, Chem. Rev. (2007). https://doi.org/10.1021/cr0500535

    Article  Google Scholar 

  36. H. Chen, C.E. Nanayakkara, V.H. Grassian, Chem. Rev. (2012). https://doi.org/10.1021/cr3002092

    Article  Google Scholar 

  37. P. Kumar, P. Kar, A.P. Manuel et al., Adv. Opt. Mater. (2020). https://doi.org/10.1002/adom.201901275

    Article  Google Scholar 

  38. X. Ma, K. Chen, B. Niu et al., Chin. J. Catal. (2020). https://doi.org/10.1016/S1872-2067(19)63486-8

    Article  Google Scholar 

  39. V.K. Prashant, Pure Appl. Chem. (2002). https://doi.org/10.1351/pac200274091693

    Article  Google Scholar 

  40. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science (2001). https://doi.org/10.1126/science.1061051

    Article  Google Scholar 

  41. J. Low, B. Cheng, J. Yu, Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2016.09.093

    Article  Google Scholar 

  42. H.G. Kim, P.H. Borse, W. Choi, J.S. Lee, Angew. Chem. (2005). https://doi.org/10.1002/ange.200500064

    Article  Google Scholar 

  43. V. Subramanian, E.E. Wolf, P.V. Kamat, J. Am. Chem. Soc. (2004). https://doi.org/10.1021/ja0315199

    Article  Google Scholar 

  44. L. Wang, X. Ma, G. Huang et al., J. Environ. Sci. (2022). https://doi.org/10.1016/j.jes.2021.04.026

    Article  Google Scholar 

  45. C. Niu, Y.Z. Lu, C.M. Lieber, Science (1993). https://doi.org/10.1126/science.261.5119.334

    Article  Google Scholar 

  46. D.C. Cameron, Surf. Coat. Technol. (2003). https://doi.org/10.1016/S0257-8972(03)00175-0

    Article  Google Scholar 

  47. X. Wang, K. Maeda, A. Thomas et al., Nat. Mater. (2009). https://doi.org/10.1038/nmat2317

    Article  Google Scholar 

  48. M. Fu, J. Liao, F. Dong, H. Li, H. Liu, J. Nanomater. (2014). https://doi.org/10.1155/2014/869094

    Article  Google Scholar 

  49. Z. Gao, K. Chen, L. Wang, B. Bai, H. Liu, Q. Wang, Appl. Catal. B (2020). https://doi.org/10.1016/j.apcatb.2019.118462

    Article  Google Scholar 

  50. Q. Zhang, P. Chen, L. Chen et al., J. Colloid Interface Sci. (2020). https://doi.org/10.1016/j.jcis.2020.02.054

    Article  Google Scholar 

  51. Y. Li, Z. Li, Y. Xia et al., Environ. Res. (2021). https://doi.org/10.1016/j.envres.2020.110260

    Article  Google Scholar 

  52. Z. Feng, L. Zeng, Q. Zhang et al., J. Environ. Sci. (2020). https://doi.org/10.1016/j.jes.2019.05.032

    Article  Google Scholar 

  53. F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, S.C. Lee, J. Mater. Chem. (2011). https://doi.org/10.1039/C1JM12844B

    Article  Google Scholar 

  54. L. Gu, J. Wang, Z. Zou, X. Han, J. Hazard. Mater. (2014). https://doi.org/10.1016/j.jhazmat.2014.01.021

    Article  Google Scholar 

  55. Y. Wang, W. Yang, X. Chen, J. Wang, Y. Zhu, Appl. Catal. B (2018). https://doi.org/10.1016/j.apcatb.2017.08.004

    Article  Google Scholar 

  56. O. Elbanna, M. Fujitsuka, T. Majima, ACS Appl. Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b08548

    Article  Google Scholar 

  57. Y. Tan, Z. Shu, J. Zhou, T. Li, W. Wang, Z. Zhao, Appl. Catal. B (2018). https://doi.org/10.1016/j.apcatb.2018.02.056

    Article  Google Scholar 

  58. Z. Tong, D. Yang, T. Xiao, Y. Tian, Z. Jiang, Chem. Eng. J. (2015). https://doi.org/10.1016/j.cej.2014.08.072

    Article  Google Scholar 

  59. Z. Li, Y. Wu, G. Lu, Appl. Catal. B (2016). https://doi.org/10.1016/j.apcatb.2016.01.057

    Article  Google Scholar 

  60. J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, X. Wang, Nat. Commun. (2012). https://doi.org/10.1038/ncomms2152

    Article  Google Scholar 

  61. P. Wang, S. Zhan, Y. Xia, S. Ma, Q. Zhou, Y. Li, Appl. Catal. B (2017). https://doi.org/10.1016/j.apcatb.2017.02.031

    Article  Google Scholar 

  62. S.A. Abdullah, M.Z. Sahdan, N. Nayan, Z. Embong, C.R.C. Hak, F. Adriyanto, Mater. Lett. (2020). https://doi.org/10.1016/j.matlet.2019.127143

    Article  Google Scholar 

  63. Y. Zang, L. Li, Y. Xu, Y. Zuo, G. Li, J. Mater. Chem. A (2014). https://doi.org/10.1039/C4TA02082K

    Article  Google Scholar 

  64. P. Kumar, U.K. Thakur, K. Alam et al., Carbon (2018). https://doi.org/10.1016/j.carbon.2018.05.019

    Article  Google Scholar 

  65. S. Chen, Y. Hu, S. Meng, X. Fu, Appl. Catal. B (2014). https://doi.org/10.1016/j.apcatb.2013.12.053

    Article  Google Scholar 

  66. K. Sridharan, E. Jang, T.J. Park, Appl. Catal. B (2013). https://doi.org/10.1016/j.apcatb.2013.05.077

    Article  Google Scholar 

  67. W. Li, D. Li, Y. Lin et al., J. Phys. Chem. C. (2012). https://doi.org/10.1021/jp209661d

    Article  Google Scholar 

  68. W. Shan, Y. Hu, Z. Bai, M. Zheng, C. Wei, Appl. Catal. B (2016). https://doi.org/10.1016/j.apcatb.2016.01.058

    Article  Google Scholar 

  69. P. Jin, L. Wang, X. Ma et al., Appl. Catal. B (2021). https://doi.org/10.1016/j.apcatb.2020.119762

    Article  Google Scholar 

  70. W.-K. Jo, T.S. Natarajan, Chem. Eng. J. (2015). https://doi.org/10.1016/j.cej.2015.06.120

    Article  Google Scholar 

  71. R.R. Hao, G.H. Wang, H. Tang, L.L. Sun, C. Xu, D.Y. Han, Appl. Catal. B (2016). https://doi.org/10.1016/j.apcatb.2016.01.026

    Article  Google Scholar 

  72. J. Zhou, M. Zhang, Y. Zhu, Phys. Chem. Chem. Phys. (2015). https://doi.org/10.1039/C4CP05173D

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by National Key Research and Development Program (No. 2018YFC1802605), Sichuan Provincial Major Science and Technology Project (No. 19ZDZX011), Nature Science Foundation of Sichuan Province (No. 2017SZ0181), International Cooperation Project of Sichuan Province (No. 2019YFH1027), Sichuan University-Yibin City school, City Strategic Cooperation Project (No. 2019 CDYB-26), and Sichuan University-Yibin City school and City Strategic Cooperation Project (No. 2020CDYB-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Wang, Y., Zhou, K. et al. Influence of TiO2 conjunct with different g–C3N4 mass ratios on photocatalytic activity: visible and UV degradation of organic pollutant. J Mater Sci: Mater Electron 32, 28321–28334 (2021). https://doi.org/10.1007/s10854-021-07208-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07208-3

Navigation