Skip to main content

Enhancement of LiFePO4 (LFP) electrochemical performance through the insertion of coconut shell-derived rGO-like carbon as cathode of Li-ion battery

Abstract

An old coconut shell as a green biomass was known as a potential carbon materials for rGO and cost effectiveness. The objective of this study is synthesizing an rGO-like carbon (C) compound from coconut shells and inserting into LiFePO4 (LFP), as Li-ion battery cathode. Thus, an LFP/rGO nanocomposite was successfully fabricated using an unconventional approach which is the combination of the sol–gel technique and mechanical ultracentrifugation. LiFePO4 precursors were prepared from commercial starting materials, using the sol–gel technique, and the composites’ carbon weight content was varied between 15 and 30%. This process was subsequently followed by evaluating the microstructural characteristics and electrochemical properties as cathode for the Li-ion batteries. The results showed a high tendency of achieving maximum efficiency with merged LFP and rGO, although LFP molecules appear scattered but are firmly attached to each rGO structure, acting as a "bridge" between the surrounding particles. This reduced graphene oxide (rGO) link is relatively effective in limiting LFP grain growth as well as expanding the surface area, leading to a declined Li-ion diffusion rate. Consequently, the bridge presence also demonstrated a significant effect by enhancing the conductivity, electrical capacity, and performance of the LFP/rGO cycle than pure LFP. Furthermore, the percentage ratio of the synthesized LFP/rGO cathode (85:15) attained higher cycle capacity, compared to 70:30 on the level of 0.1 C, with specific discharging average of 128.03 mAhg−1 and retention capacity of 97.75% after 50 cycles, at room temperature and a rate of 0.1 C.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997)

    CAS  Google Scholar 

  2. 2.

    N.A. Hamid, S. Wennig, S. Hardt, A. Heinzel, C. Schulz, H. Wiggers, J. Power Sources 216, 76 (2012)

    CAS  Google Scholar 

  3. 3.

    C. Gong, Z. Xue, S. Wen, Y. Ye, X. Xie, J. Power Sources 318, 93 (2016)

    CAS  Google Scholar 

  4. 4.

    Z. Yu, L. Jiang, Solid State Ion. 325, 12 (2018)

    CAS  Google Scholar 

  5. 5.

    A. Eftekhari, J. Power Sources 17, 393 (2017)

    Google Scholar 

  6. 6.

    J. Ma, B. Li, H. Du, C. Xu, F. Kang, J. Solid State Electrochem. 16, 1353 (2012)

    CAS  Google Scholar 

  7. 7.

    X. Zhu, J. Hu, W. Wu, W. Zeng, H. Dai, Y. Du, Z. Liu, L. Li, H. Ji, Y. Zhu, J Mater Chem A 2, 7812 (2014)

    CAS  Google Scholar 

  8. 8.

    Y. Huang, H. Liu, L. Gong, Y. Hou, Q. Li, J. Power Sources 347, 29 (2017)

    CAS  Google Scholar 

  9. 9.

    L.N. Sun, Z.Y. Yuan, Y.F. Xue, W.L. Hong, X.Z. Ren, P.X. Zhang, Mater. Sci. Forum. 900, 74 (2017)

    Google Scholar 

  10. 10.

    Y. Liu, C. Cao, J. Li, Electrochim. Acta 55, 3921 (2010)

    CAS  Google Scholar 

  11. 11.

    H. Gong, H. Xue, T. Wang, J. He, J. Power Sources 318, 220 (2016)

    CAS  Google Scholar 

  12. 12.

    J. Wang, Ceram. Int. 40, 6979 (2014)

    CAS  Google Scholar 

  13. 13.

    A.Y. Nugraheni, M. Nasrullah, F.A. Prasetya, F. Astuti, Darminto, Mater. Sci. Forum 827, 285 (2015)

    Google Scholar 

  14. 14.

    M.K. Wardhani, F. Astuti, D. Darminto, J. Phys. Sci. Eng. 1, 1 (2016)

    Google Scholar 

  15. 15.

    R. Asih, E.B. Yutomo, D. Ristiani, M.A. Baqiya, T. Kawamata, M. Kato, I. Watanabe, Y. Koike, Darminto, Mater. Sci. Forum 966, 290 (2019)

    Google Scholar 

  16. 16.

    E.S.A. Serea, S.A. Mohamed, A.E. Shalan, M.M. Rashad, Hybrid Perovskite Composite Materials (Elsevier, Amsterdam, 2021), pp. 291–313

    Google Scholar 

  17. 17.

    M.M. Moharam, A.N. El Shazly, K.V. Anand, D.E.-R.A. Rayan, M.K.A. Mohammed, M.M. Rashad, A.E. Shalan, Top. Curr. Chem. 379, 20 (2021)

    CAS  Google Scholar 

  18. 18.

    M.F. Sanad, A.E. Shalan, S.O. Abdellatif, E.S.A. Serea, M.S. Adly, Md.A. Ahsan, Top. Curr. Chem. 378, 48 (2020)

    CAS  Google Scholar 

  19. 19.

    A.E. Shalan, N. Perinka, E.S.A. Serea, M.F. Sanad, Advanced Lightweight Multifunctional Materials (Elsevier, UK, 2021), p. 153

    Google Scholar 

  20. 20.

    K. Valadi, S. Gharibi, R. Taheri-Ledari, S. Akin, A. Maleki, A.E. Shalan, Environ. Chem. Lett. 19, 2185 (2021)

    CAS  Google Scholar 

  21. 21.

    A.E. Shalan, M.K.A. Mohammed, N. Govindan, RSC Adv. 11, 4417 (2021)

    CAS  Google Scholar 

  22. 22.

    S.M. Abdelbasir, A.E. Shalan, Korean J. Chem. Eng. 36, 1209 (2019)

    CAS  Google Scholar 

  23. 23.

    S.N. Alam, N. Sharma, L. Kumar, Graphene 06, 1 (2017)

    CAS  Google Scholar 

  24. 24.

    P. Russo, A. Hu, G. Compagnini, Nano-Micro Lett. 5, 260 (2013)

    Google Scholar 

  25. 25.

    H. Bi, F. Huang, Y. Tang, Z. Liu, T. Lin, J. Chen, W. Zhao, Electrochim. Acta 88, 414 (2013)

    CAS  Google Scholar 

  26. 26.

    M.T.H. Aunkor, I.M. Mahbubul, R. Saidur, H.S.C. Metselaar, RSC Adv. 6, 27807 (2016)

    CAS  Google Scholar 

  27. 27.

    F. Iskandar, Y. Rus, Adv. Mater. Res. 1112, 290 (2015)

    Google Scholar 

  28. 28.

    M. Chen, K. Kou, M. Tu, J. Hu, X. Du, B. Yang, Solid State Ion. 310, 95 (2017)

    CAS  Google Scholar 

  29. 29.

    W. Song, J. Liu, L. You, S. Wang, Q. Zhou, Y. Gao, R. Yin, W. Xu, Z. Guo, J. Power Sources 419, 192 (2019)

    CAS  Google Scholar 

  30. 30.

    J. Liu, X. Lin, T. Han, X. Li, C. Gu, J. Li, Appl. Surf. Sci. 459, 233 (2018)

    CAS  Google Scholar 

  31. 31.

    A.V. Murugan, T. Muraliganth, A. Manthiram, J. Phys. Chem. C 112, 14665 (2008)

    CAS  Google Scholar 

  32. 32.

    W. Shang, L. Kong, X. Ji, Solid State Sci. 38, 79 (2014)

    CAS  Google Scholar 

  33. 33.

    Z. Yuan, Y. Xue, L. Sun, Y. Li, H. Mi, L. Deng, W. Hong, X. Ren, P. Zhang, Ferroelectrics 528, 1 (2018)

    CAS  Google Scholar 

  34. 34.

    K.S. Dhindsa, B.P. Mandal, K. Bazzi, M.W. Lin, M. Nazri, G.A. Nazri, V.M. Naik, V.K. Garg, A.C. Oliveira, P. Vaishnava, R. Naik, Z.X. Zhou, Solid State Ion. 253, 94 (2013)

    CAS  Google Scholar 

  35. 35.

    G. Yuan, J. Bai, T.N.L. Doan, P. Chen, Mater. Lett. 158, 248 (2015)

    CAS  Google Scholar 

  36. 36.

    R. Wang, C. Xu, J. Sun, L. Gao, J. Jin, C. Lin, Mater. Lett. 112, 207 (2013)

    CAS  Google Scholar 

  37. 37.

    C. Su, X. Bu, L. Xu, J. Liu, C. Zhang, Electrochim. Acta 64, 190 (2012)

    CAS  Google Scholar 

  38. 38.

    X. Lei, H. Zhang, Y. Chen, W. Wang, Y. Ye, C. Zheng, P. Deng, Z. Shi, J. Alloys Compd. 626, 280 (2015)

    CAS  Google Scholar 

  39. 39.

    Z. Tian, S. Liu, F. Ye, S. Yao, Z. Zhou, S. Wang, Appl. Surf. Sci. 305, 427 (2014)

    CAS  Google Scholar 

  40. 40.

    Y. Ding, Y. Jiang, F. Xu, J. Yin, H. Ren, Q. Zhuo, Z. Long, P. Zhang, Electrochem. Commun. 12, 10 (2010)

    CAS  Google Scholar 

  41. 41.

    S.H. Ha, Y.J. Lee, Chem Eur J. 20, 1 (2014)

    Google Scholar 

  42. 42.

    C.H.A. Tsang, H. Huang, J. Xuan, H. Wang, D.Y.C. Leung, Renew. Sustain. Energy Rev. 120, 1 (2020)

    Google Scholar 

  43. 43.

    Z. Bo, X. Shuai, S. Mao, H. Yang, J. Qian, J. Chen, J. Yan, K. Cen, Sci. Rep. 4, 4684 (2015)

    Google Scholar 

  44. 44.

    J. Wang, E.C. Salihi, L. Šiller, Mater. Sci. Eng. C 72, 1 (2017)

    CAS  Google Scholar 

  45. 45.

    J. Jagiełło, A. Chlanda, M. Baran, M. Gwiazda, L. Lipińska, Nanomaterials 10, 1846 (2020)

    Google Scholar 

  46. 46.

    E. Suarso, A.Z. Laila, F.A. Setyawan, M. Zainuri, Z. Arifin, Darminto, Mater. Sci. Forum 966, 386 (2019)

    Google Scholar 

  47. 47.

    R. Angela, H. Islam, V. Sari, C. Latif, M. Zainuri, and S. Pratapa, in (Solo, Indonesia, 2017), p. 030102.

  48. 48.

    N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, J. Chem. Educ. 95, 197 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Indonesian Endowment Fund for Education (LPDP) from the Indonesian Ministry of Finance for a full-ride scholarships through the BUDI-DN Doctorate program (ES) and PDUPT Research Grant (D) (20161141020723), 2021. We would also like to thank the Laboratory of Microelectronics and Laboratory of Institute of Nanoelectronics Engineering, University of Malaysia Perlis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Darminto.

Ethics declarations

Conflict of interest

We authors declare that we do not have conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suarso, E., Setyawan, F.A., Subhan, A. et al. Enhancement of LiFePO4 (LFP) electrochemical performance through the insertion of coconut shell-derived rGO-like carbon as cathode of Li-ion battery. J Mater Sci: Mater Electron 32, 28297–28306 (2021). https://doi.org/10.1007/s10854-021-07206-5

Download citation