Skip to main content

Advertisement

Log in

Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate-coated carbon nanofiber electrodes via dip-coating method for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The conducting polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is used to modify carbon nanofibers via the dip-coating method. The modification process is carried out by immersing the carbon nanofibers 3, 6, and 9 times in PEDOT:PSS solution. As a result, the production of flexible, homogeneous, self-standing, bead-free carbon nanofibers has been accomplished. The PEDOT:PSS coating process is carried out without negatively affecting the porosity between the nanofibers and the average diameter of the nanofibers increases linearly with the dipping number. Initially, the specific capacitance of the neat carbon nanofiber is 199 F/g in the voltage range of − 0.5 to + 0.5 V at a scan rate of 10 mV/s, while specific capacitance was measured as 278, 311, 350 F/g after the 3, 6, and 9 times PEDOT:PSS coating process, respectively. Additionally, the 9P-CNF sample shows a very high capacitance value, such as 1321 F/g, at a scanning speed of 1 mV/s in 1 M H2SO4 electrolyte. On the other hand, it has been observed that the performance of the hybrid electrode retains approximately 80% of its performance after 2500 CV cycles. The performance of the carbon nanofiber electrode is enhanced by dip-coating with PEDOT:PSS, which is simple, fast, and suitable for large-scale production. The resulting hybrid electrode is suitable for a variety of energy storage applications, most notably supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Cai, M. Peng, X. Yu, Y. Fu, D. Zou, J. Mater. Chem. C 2, 1184 (2014)

    Article  CAS  Google Scholar 

  2. K.D. Fong, T. Wang, S.K. Smoukov, Sustain Energy Fuels 1, 1857 (2017)

    Article  CAS  Google Scholar 

  3. D. Antiohos, G. Folkes, P. Sherrell, S. Ashraf, G.G. Wallace, P. Aitchison, A.T. Harris, J. Chen, A.I. Minett, J. Mater. Chem. 21, 15987 (2011)

    Article  CAS  Google Scholar 

  4. B.C. Kim, J.Y. Hong, G.G. Wallace, H.S. Park, Adv. Energy Mater. 5, 1500959 (2015)

    Article  Google Scholar 

  5. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)

    Article  CAS  Google Scholar 

  6. T.G. Yun, D. Kim, S.M. Kim, I.D. Kim, S. Hyun, S.M. Han, Adv. Energy Mater. 8, 1800064 (2018)

    Article  Google Scholar 

  7. A. Abas, H. Sheng, Y. Ma, X. Zhang, Y. Wei, Q. Su, W. Lan, E. Xie, J. Mater. Sci. Mater. Electron. 30, 10953 (2019)

    Article  CAS  Google Scholar 

  8. M. Demir, B. Ashourirad, J.H. Mugumya, S.K. Saraswat, H.M. El-Kaderi, R.B. Gupta, Int. J. Hydrog. Energy 43, 18549 (2018)

    Article  CAS  Google Scholar 

  9. K.K. Liu, Q. Jiang, C. Kacica, H.G. Derami, P. Biswas, S. Singamaneni, RSC Adv. 8, 31296 (2018)

    Article  CAS  Google Scholar 

  10. M.A.A. Mohd Abdah, N.H.N. Azman, S. Kulandaivalu, Y. Sulaiman, Mater. Des. 186, 108199 (2020)

    Article  CAS  Google Scholar 

  11. O. Sadak, M.U.A. Prathap, S. Gunasekaran, Carbon N. Y. 144, 756 (2019)

    Article  CAS  Google Scholar 

  12. H. Zhang, Z. Hu, M. Li, L. Hu, S. Jiao, J. Mater. Chem. A 2, 17024 (2014)

    Article  CAS  Google Scholar 

  13. W. Wang, O. Sadak, J. Guan, S. Gunasekaran, J. Energy Storage 30, 101533 (2020)

    Article  Google Scholar 

  14. G. Kaur, R. Adhikari, P. Cass, M. Bown, P. Gunatillake, RSC Adv. 5, 37553 (2015)

    Article  CAS  Google Scholar 

  15. J.H. Lee, Y.R. Jeong, G. Lee, S.W. Jin, Y.H. Lee, S.Y. Hong, H. Park, J.W. Kim, S.S. Lee, J.S. Ha, ACS Appl. Mater. Interfaces 10, 28027 (2018)

    Article  CAS  Google Scholar 

  16. I.K. Moon, B. Ki, J. Oh, Chem. Eng. J. 392, 123794 (2020)

    Article  CAS  Google Scholar 

  17. N. Sinan, E. Unur, J. Electrochem. Sci. Technol. 11, 50 (2020)

    Article  CAS  Google Scholar 

  18. E. Ismar, T. Karazehir, M. Ates, A.S. Sarac, J. Appl. Polym. Sci. 135, 1 (2018)

    Article  Google Scholar 

  19. Y. Cheng, L. Huang, X. Xiao, B. Yao, L. Yuan, T. Li, Z. Hu, B. Wang, J. Wan, J. Zhou, Nano Energy 15, 66 (2015)

    Article  CAS  Google Scholar 

  20. Y. Li, G. Ren, Z. Zhang, C. Teng, Y. Wu, X. Lu, Y. Zhu, L. Jiang, J. Mater. Chem. A 4, 17324 (2016)

    Article  CAS  Google Scholar 

  21. C. Yin, C. Yang, M. Jiang, C. Deng, L. Yang, J. Li, D. Qian, ACS Appl. Mater. Interfaces 8, 2741 (2016)

    Article  CAS  Google Scholar 

  22. Y. Ge, R. Jalili, C. Wang, T. Zheng, Y. Chao, G.G. Wallace, Electrochim. Acta 235, 348 (2017)

    Article  CAS  Google Scholar 

  23. F. Su, M. Miao, Electrochim. Acta 127, 433 (2014)

    Article  CAS  Google Scholar 

  24. S. Khasim, A. Pasha, N. Badi, M. Lakshmi, Y.K. Mishra, RSC Adv. 10, 10526 (2020)

    Article  CAS  Google Scholar 

  25. R. Yuksel, H.E. Unalan, Int. J. Energy Res. 39, 2042 (2015)

    Article  CAS  Google Scholar 

  26. N. Kumar, R.T. Ginting, M. Ovhal, J.W. Kang, Mol. Cryst. Liq. Cryst. 660, 135 (2018)

    Article  CAS  Google Scholar 

  27. S. Cho, M. Kim, J. Jang, ACS Appl. Mater. Interfaces 7, 10213 (2015)

    Article  CAS  Google Scholar 

  28. Q. Cheng, C. Meng, Y. Qian, J. He, X. Dong, Prog. Org. Coat. 138, 105439 (2020)

    Article  CAS  Google Scholar 

  29. S. Ahmed, M. Rafat, M.K. Singh, S.A. Hashmi, Nanotechnology 29, 395401 (2018)

    Article  Google Scholar 

  30. X. Wang, K. Gao, Z. Shao, X. Peng, X. Wu, F. Wang, J. Power Sources 249, 148 (2014)

    Article  CAS  Google Scholar 

  31. Y. Altin, A. Celik Bedeloglu, J. Innov. Sci. Eng. 4, 69 (2020)

    Google Scholar 

  32. Y. Altin, A. Celik Bedeloglu, Int. J. Energy Res. 45, 16497 (2021)

    Article  CAS  Google Scholar 

  33. Y. Altin, M. Tas, I. Borazan, A. Demir, A. Bedeloglu, Surf. Coat. Technol. 302, 75 (2016)

    Article  CAS  Google Scholar 

  34. P. Yang, W. Mai, Nano Energy 8, 274 (2014)

    Article  CAS  Google Scholar 

  35. G. Nabi, W. Raza, M.A. Kamran, T. Alharbi, M. Rafique, M.B. Tahir, S. Hussain, N.R. Khalid, Q. ul-Aain, N. Malik, R.S. Ahmed, C.B. Cao, J. Energy Storage 29, 101452 (2020)

    Article  Google Scholar 

  36. A. Elgendy, N.M. El Basiony, F. El-Taib Heakal, A.E. Elkholy, J. Power Sources 466, 228294 (2020)

    Article  CAS  Google Scholar 

  37. H. Shi, C. Liu, J. Xu, H. Song, B. Lu, F. Jiang, W. Zhou, G. Zhang, Q. Jiang, ACS Appl. Mater. Interfaces 5, 12811 (2013)

    Article  CAS  Google Scholar 

  38. Q. Jiang, C. Liu, H. Song, J. Xu, D. Mo, H. Shi, Z. Wang, F. Jiang, B. Lu, Z. Zhu, Int. J. Electrochem. Sci. 9, 7540 (2014)

    Google Scholar 

  39. S.S. Karade, B.R. Sankapal, J. Electroanal. Chem. 771, 80 (2016)

    Article  CAS  Google Scholar 

  40. P.L. Anto, C.Y. Panicker, H.T. Varghese, D. Philip, J. Raman Spectrosc. 37, 1265 (2006)

    Article  CAS  Google Scholar 

  41. S. He, M. Mukaida, K. Kirihara, L. Lyu, Q. Wei, Polymers (Basel). 10, 1065 (2018)

    Article  Google Scholar 

  42. H. Lobo, J.V. Bonilla, Handbook of Plastics Analysis (CRC Press, Boca Raton, 2003)

    Book  Google Scholar 

  43. D.A. Long, Infrared and Raman Characteristic Group Frequencies. Tables and Charts George Socrates John Wiley and Sons, Ltd, Chichester, Third Edition, 2001. (Wiley, Chichester, 2004)

  44. Y. Altin, F. Parin, K. Yildirim, Kaucuk Karakterizasyonunda Termal Yontemlerin Etkinligi in 3rd Rubber Congr. with Int. Particip. (Istanbul, 2016)

  45. G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, P.S. Lee, Adv. Energy Mater. 6, 1501882 (2016)

    Article  Google Scholar 

  46. P.K. Shen, C.-Y. Wang, S.P. Jiang, X. Sun, J. Zhang, Electrochemical Energy Advanced Materials and Technologies (CRC Press, Boca Raton, 2015), pp. 451–477

    Book  Google Scholar 

  47. Y.T. Weng, N.L. Wu, J. Power Sources 238, 69 (2013)

    Article  CAS  Google Scholar 

  48. W. Yan, J. Li, G. Zhang, L. Wang, D. Ho, J. Mater. Chem. A 8, 554 (2020)

    Article  CAS  Google Scholar 

  49. Q. Yang, S.K. Pang, K.C. Yung, J. Electroanal. Chem. 728, 140 (2014)

    Article  CAS  Google Scholar 

  50. D. Nam, Y. Heo, S. Cheong, Y. Ko, J. Cho, Appl. Surf. Sci. 440, 730 (2018)

    Article  CAS  Google Scholar 

  51. Y. Xia, Y. Mo, W. Meng, X. Du, C. Ma, Polymers (Basel) 11, 1355 (2019)

    Article  CAS  Google Scholar 

  52. T.S. Sonia, P.A. Mini, R. Nandhini, K. Sujith, B. Avinash, S.V. Nair, K.R.V. Subramanian, Bull. Mater. Sci. 36, 547 (2013)

    Article  CAS  Google Scholar 

  53. J. Jang, J. Bae, M. Choi, S.H. Yoon, Carbon N. Y. 43, 2730 (2005)

    Article  CAS  Google Scholar 

  54. D. Zhao, Q. Zhang, W. Chen, X. Yi, S. Liu, Q. Wang, Y. Liu, J. Li, X. Li, H. Yu, ACS Appl. Mater. Interfaces 9, 13213 (2017)

    Article  CAS  Google Scholar 

  55. R. Ranjusha, K.M. Sajesh, S. Roshny, V. Lakshmi, P. Anjali, T.S. Sonia, A. Sreekumaran-Nair, K.R.V. Subramanian, S.V. Nair, K.P. Chennazhi, A. Balakrishnan, Microporous Mesoporous Mater. 186, 30 (2014)

    Article  CAS  Google Scholar 

  56. Q. Dong, G. Wang, H. Hu, J. Yang, B. Qian, Z. Ling, J. Qiu, J. Power Sources 243, 350 (2013)

    Article  CAS  Google Scholar 

  57. J.K. Gan, Y.S. Lim, A. Pandikumar, N.M. Huang, H.N. Lim, RSC Adv. 5, 12692 (2015)

    Article  CAS  Google Scholar 

  58. N.C. Abeykoon, J.S. Bonso, J.P. Ferraris, RSC Adv. 5, 19865 (2015)

    Article  CAS  Google Scholar 

  59. H.D. Yoo, J.H. Jang, J.H. Ryu, Y. Park, S.M. Oh, J. Power Sources 267, 411 (2014)

    Article  CAS  Google Scholar 

  60. D. Zhang, X. Zhang, Y. Chen, P. Yu, C. Wang, Y. Ma, J. Power Sources 196, 5990 (2011)

    Article  CAS  Google Scholar 

  61. W.K. Chee, H.N. Lim, Z. Zainal, I. Harrison, N.M. Huang, Y. Andou, K.F. Chong, A. Pandikumar, RSC Adv. 7, 12033 (2017)

    Article  CAS  Google Scholar 

  62. B.H. Kim, K.S. Yang, J. Ind. Eng. Chem. 20, 3474 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported as a Ph.D. thesis research project by Bursa Technical University Scientific Research Project (BAP), Project Number: 172D32. Thanks to Prof. Dr. Deniz Uzunsoy, Research Assistant Taha Yasin Eken and BTU-Metallurgy and Materials Engineering lab for their help on electrochemical workstation and tube furnace usage.

Funding

This work was supported as a PhD research project by Bursa Technical University Scientific Research Project (BAP) Unit, Project Number: 172D32.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Yasin Altin or Ayse Celik Bedeloglu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altin, Y., Celik Bedeloglu, A. Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate-coated carbon nanofiber electrodes via dip-coating method for supercapacitor applications. J Mater Sci: Mater Electron 32, 28234–28244 (2021). https://doi.org/10.1007/s10854-021-07200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07200-x

Navigation