Skip to main content

LiNbO3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a cathode material with enhanced electrochemical performances for lithium-ion batteries


Lithium-rich manganese-based cathode materials have become one of the most concerned cathode materials for high-energy lithium-ion batteries. In order to improve its electrochemical performance, Li1.2Mn0.54Ni0.13Co0.13O2 with different content LiNbO3 coatings was synthesized by mechanical ball milling. The morphology, microstructure, and electrochemical properties of the samples were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope, galvanostatic charge/discharge, electrochemical impedance spectroscopy, and cyclic voltammetry. The results show that LiNbO3 coating not only protects the cathode material from the corrosion of electrolyte and HF but also improves the migration rate of Li+ in the interface region. Notably, the 5 wt% LiNbO3-coated Li1.2Mn0.54Ni0.13Co0.13O2 exhibits capacity retention of 89.9% under 0.1 C after 100 cycles. Besides, it has a higher discharge capacity than Li1.2Mn0.54Ni0.13Co0.13O2 at different rates. LiNbO3 coating is an effective way to improve its cycle stability and rate performance of Li1.2Mn0.54Ni0.13Co0.13O2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    M.H. Sun, S.Z. Huang, L.H. Chen, Y. Li, X.Y. Yang, Z.Y. Yuan, B.L. Su, Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45, 3479–3563 (2016)

    CAS  Google Scholar 

  2. 2.

    W.D. Li, B.H. Song, A. Manthiram, High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 46, 3006–3059 (2017)

    CAS  Google Scholar 

  3. 3.

    L. Kang, M. Zhang, J. Zhang, S. Liu, N. Zhang, W. Yao, Y. Ye, C. Luo, Z. Gong, C. Wang, X. Zhou, X. Wu, S.C. Jun, Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors. J. Mater. Chem. A 8, 24053–24064 (2020)

    CAS  Google Scholar 

  4. 4.

    L. Kang, C. Huang, J. Zhang, M. Zhang, N. Zhang, S. Liu, Y. Ye, C. Luo, Z. Gong, C. Wang, X. Zhou, X. Wu, S.C. Jun, Effect of fluorine doping and sulfur vacancies of CuCo2S4 on its electrochemical performance in supercapacitors. Chem. Eng. J. 390(2020)

    CAS  Google Scholar 

  5. 5.

    S. Liu, L. Kang, J. Hu, E. Jung, J. Zhang, S.C. Jun, Y. Yamauchi, Unlocking the potential of oxygen-deficient copper-doped Co3O4 nanocrystals confined in carbon as an advanced electrode for flexible solid-state supercapacitors. ACS Energy Lett. 6, 3011–3019 (2021)

    CAS  Google Scholar 

  6. 6.

    M.M. Thackeray, S.H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, S.A. Hackney, Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17, 3112–3125 (2007)

    CAS  Google Scholar 

  7. 7.

    H. Arai, S. Okada, Y. Sakurai, J. Yamaki, Reversibility of LiNiO2 cathode. Solid State Ion. 95, 275–282 (1997)

    CAS  Google Scholar 

  8. 8.

    M. Gu, I. Belharouak, J.M. Zheng, H.M. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D.R. Baer, J.G. Zhang, N.D. Browning, J. Liu, C.M. Wang, Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7, 760–767 (2013)

    CAS  Google Scholar 

  9. 9.

    D. Mohanty, S. Kalnaus, R.A. Meisner, K.J. Rhodes, J.L. Li, E.A. Payzant, D.L. Wood, C. Daniel, Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J. Power Sources 229, 239–248 (2013)

    CAS  Google Scholar 

  10. 10.

    M.K. Shobana, Metal oxide coated cathode materials for Li ion batteries—a review. J. Alloys Compd. 802, 477–487 (2019)

    CAS  Google Scholar 

  11. 11.

    L. Zhou, Y.N. Wu, J. Huang, X. Fang, T. Wang, W.M. Liu, Y. Wang, Y. Jin, X.C. Tang, Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with Li+-conductive Li2SiO3 for lithium ion batteries. J. Alloys Compd. 724, 991–999 (2017)

    CAS  Google Scholar 

  12. 12.

    L. He, J.M. Xu, T. Han, H. Han, Y.J. Wang, J. Yang, J.R. Wang, W.K. Zhu, C.J. Zhang, Y.H. Zhang, SmPO4-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a cathode material with enhanced cycling stability for lithium ion batteries. Ceram. Int. 43, 5267–5273 (2017)

    CAS  Google Scholar 

  13. 13.

    Y. Li, C. Wu, Y. Bai, L. Liu, H. Wang, F. Wu, N. Zhang, Y.F. Zou, Hierarchical mesoporous lithium-rich LiLi0.2Ni0.2Mn0.6O2 cathode material synthesized via ice templating for lithium-ion battery. ACS Appl. Mater. Interfaces 8, 18832–18840 (2016)

    CAS  Google Scholar 

  14. 14.

    K. Redel, A. Kulka, A. Plewa, J. Molenda, High-performance Li-rich layered transition metal oxide cathode materials for Li-ion batteries. J. Electrochem. Soc. 166, A5333–A5342 (2019)

    CAS  Google Scholar 

  15. 15.

    R.Z. Yu, Z.J. Zhang, S. Jamil, J.C. Chen, X.H. Zhang, X.Y. Wang, Z.H. Yang, H.B. Shu, X.K. Yang, Effects of nanofiber architecture and antimony doping on the performance of lithium-rich layered oxides: enhancing lithium diffusivity and lattice oxygen stability. ACS Appl. Mater. Interfaces 10, 16561–16571 (2018)

    CAS  Google Scholar 

  16. 16.

    Y.B. Cao, X.Y. Qi, K.H. Hu, Y. Wang, Z.G. Gan, Y. Li, G.R. Hu, Z.D. Peng, K. Du, Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 10, 18270–18280 (2018)

    CAS  Google Scholar 

  17. 17.

    G.R. Hu, X.Y. Qi, K.H. Hu, X.W. Lai, X. Zhang, K. Du, Z.D. Peng, Y.B. Cao, A facile cathode design with a LiNi0.6Co0.2Mn0.2O2 core and an AlF3-activated Li1.2Ni0.2Mn0.6O2 shell for Li-ion batteries. Electrochim. Acta 265, 391–399 (2018)

    CAS  Google Scholar 

  18. 18.

    S.L. Pang, M. Zhu, K.J. Xu, X.Q. Shen, H.R. Wen, Y.J. Su, G.M. Yang, X. Wu, S.W. Li, W.Z. Wang, X.M. Xi, H.B. Wang, Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 via L-ascorbic acid-based treatment as cathode material for Li-ion batteries. J. Electrochem. Soc. 165, A1897–A1902 (2018)

    CAS  Google Scholar 

  19. 19.

    L. Li, B.H. Song, Y.L. Chang, H. Xia, J.R. Yang, K.S. Lee, L. Lu, Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. J. Power Sources 283, 162–170 (2015)

    CAS  Google Scholar 

  20. 20.

    X.D. Xiang, W.S. Li, Self-directed chemical synthesis of lithium-rich layered oxide Li Li0.2Ni0.2Mn0.6O2 with tightly interconnected particles as cathode of lithium ion batteries with improved rate capability. Electrochim. Acta 127, 259–265 (2014)

    CAS  Google Scholar 

  21. 21.

    Q.Y. Wang, J. Liu, A.V. Murugan, A. Manthiram, High capacity double-layer surface modified LiLi0.2Mn0.54Ni0.13Co0.13O2 cathode with improved rate capability. J. Mater. Chem. 19, 4965–4972 (2009)

    CAS  Google Scholar 

  22. 22.

    F. Wu, N. Li, Y.F. Su, L.J. Zhan, L.Y. Bao, J. Wang, L. Chen, Y. Zheng, L.Q. Dai, J.Y. Peng, S. Chen, Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett. 14, 3550–3555 (2014)

    CAS  Google Scholar 

  23. 23.

    J.C. Zhang, R. Gao, L.M. Sun, Z.Y. Li, H. Zhang, Z.B. Hu, X.F. Liu, Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy. Phys. Chem. Chem. Phys. 18, 25711–25720 (2016)

    CAS  Google Scholar 

  24. 24.

    T.F. Yi, Y.M. Li, S.Y. Yang, Y.R. Zhu, Y. Xie, Improved cycling stability and fast charge-discharge performance of cobalt-free lithium-rich oxides by magnesium-doping. ACS Appl. Mater. Interfaces 8, 32349–32359 (2016)

    CAS  Google Scholar 

  25. 25.

    T.-F. Yi, X. Han, S.-Y. Yang, Y.-R. Zhu, Enhanced electrochemical performance of Li-rich low-Co Li1.2Mn0.56Ni0.16Co0.08–xAlxO2 (0≤x≤0.08) as cathode materials. Sci. China Mater. 59, 618–628 (2016)

    CAS  Google Scholar 

  26. 26.

    T.-F. Yi, B. Chen, Y.-R. Zhu, X.-Y. Li, R.-S. Zhu, Enhanced rate performance of molybdenum-doped spinel LiNi0.5Mn1.5O4 cathode materials for lithium ion battery. J. Power Sources 247, 778–785 (2014)

    CAS  Google Scholar 

  27. 27.

    S.Y. Yang, X.Y. Wang, X.K. Yang, Y.S. Bai, Z.L. Liu, H.B. Shu, Q.L. Wei, Determination of the chemical diffusion coefficient of lithium ions in spherical LiNi0.5Mn0.3Co0.2O2. Electrochim. Acta 66, 88–93 (2012)

    CAS  Google Scholar 

  28. 28.

    C.S. Xu, H.T. Yu, C.F. Guo, Y. Xie, N. Ren, T.F. Yi, G.X. Zhang, Surface modification of Li1.2Mn0.54Ni0.13Co0.13O2 via an ionic conductive LiV3O8 as a cathode material for Li-ion batteries. Ionics 25, 4567–4576 (2019)

    CAS  Google Scholar 

  29. 29.

    S.Q. Yang, P.B. Wang, H.X. Wei, L.B. Tang, X.H. Zhang, Z.J. He, Y.J. Li, H. Tong, J.C. Zheng, Li4V2Mn(PO4)4-stablized LiLi0.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium ion batteries. Nano Energy 63(2019)

    CAS  Google Scholar 

  30. 30.

    J. Duan, W. Tang, R. Wang, X. Tang, J. Li, M. Tang, P. Li, Inhibited voltage decay and enhanced electrochemical performance of the Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material by CeAlOδ surface coating modification. Appl. Surf. Sci. 521(2020)

    CAS  Google Scholar 

  31. 31.

    L. Zhao, Y. Sun, K. Song, F. Ding, Enhanced electrochemical performance of Li-rich Li[Li0.2Mn0.52Ni0.13Co0.13V0.02]O2 cathode materials for lithium ion batteries by Li1.13Mn0.47Ni0.2Co0.2O2 coating. Ionics 26, 4455–4462 (2020)

    CAS  Google Scholar 

  32. 32.

    C. Chen, T.F. Geng, C.Y. Du, P.J. Zuo, X.Q. Cheng, Y.L. Ma, G.P. Yin, Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. J. Power Sources 331, 91–99 (2016)

    CAS  Google Scholar 

  33. 33.

    X.D. Zhang, J.J. Hao, L.C. Wu, Z.M. Guo, Z.H. Ji, J. Luo, C.G. Chen, J.F. Shu, H.M. Long, F. Yang, A.A. Volinsky, Enhanced electrochemical performance of perovskite LaNiO3 coating on Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim. Acta 283, 1203–1212 (2018)

    CAS  Google Scholar 

  34. 34.

    Y. Liu, Z. Yang, J. Zhong, J. Li, R. Li, Y. Yu, F. Kang, Surface-functionalized coating for lithium-rich cathode material to achieve ultra-high rate and excellent cycle performance. ACS Nano 13, 11891–11900 (2019)

    CAS  Google Scholar 

  35. 35.

    Y.X. Hao, F.N. Yang, D.D. Luo, J.H. Tian, Z.Q. Shan, Improved electrochemical performances of yttrium oxyfluoride-coated LiLi0.2Mn0.54Ni0.13Co0.13O2 for lithium ion batteries. J. Energy Chem. 27, 1239–1246 (2018)

    Google Scholar 

  36. 36.

    W.X. Zhang, Y.T. Liu, J.L. Wu, H.X. Shao, Y.F. Yang, Surface modification of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material with Al2O3/SiO2 composite for lithium-ion batteries. J. Electrochem. Soc. 166, A863–A872 (2019)

    CAS  Google Scholar 

  37. 37.

    X. Nie, Z. Xu, L. Chen, J. Li, J. Cheng, Q. Sun, Y. Qiao, X. Xu, Y. Zhang, D. Li, R. Peng, L. Ci, Enhanced electrochemical performance of Li1.2[Mn0.54Co0.13Ni0.13]O2 enabled by synergistic effect of Li1.5Na0.5SiO3 modification. Adv. Mater. Interfaces 7, 2000378 (2020)

    CAS  Google Scholar 

  38. 38.

    F. Yang, S.Z. Lin, Z.M. Guo, Y.R. Shao, B. Zhang, X.D. Zhang, S.H. Yan, A.A. Volinsky, Suppressed voltage decay and improved electrochemical performance by coating LiAl5O8 on the surface of Li1.2Mn0.54Ni0.13Co0.13O2. J. Alloys Compd. 805, 1034–1043 (2019)

    CAS  Google Scholar 

  39. 39.

    Y.X. Zuo, B. Huang, C.M. Jiao, R.G. Lv, G.C. Liang, Enhanced electrochemical properties of LiLi0.2Mn0.54Ni0.13Co0.13O2 with ZrF4 surface modification as cathode for Li-ion batteries. J. Mater. Sci.-Mater. Electron. 29, 524–534 (2018)

    CAS  Google Scholar 

  40. 40.

    C. Song, W. Feng, Z. Shi, Z. Huang, Coating TiO2 on lithium-rich Li1.2Mn0.54Ni0.13Co0.13O2 material to improve its electrochemical performance. Ionics 27, 457–468 (2020)

    Google Scholar 

  41. 41.

    C.D. Li, Z.L. Yao, J. Xu, P. Tang, X. Xiong, Surface-modified LiLi0.2Mn0.54Ni0.13Co0.13O2 nanoparticles with LaF3 as cathode for Li-ion battery. Ionics 23, 549–558 (2017)

    CAS  Google Scholar 

Download references


This work received support from the Chongqing Technology Innovation and Application Development project of Chongqing Science and Technology Commission (No.cstc2019jscx-msxmX0358), the Key Project of Science and Technology Research of Chongqing Education Commission of China (No.KJZDK201801103), the Scientific and Technological Research Foundation of Chongqing Municipal Education Commission (No.KJQN201901110), the Venture & Innovation Support Program for Chongqing Overseas Returnees (No.cx2019128), and the General program of Chongqing Natural Science Foundation (No.cstc2019jcyj-msxmX0165).

Author information



Corresponding author

Correspondence to Xuebu Hu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wu, K., Xu, C. et al. LiNbO3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a cathode material with enhanced electrochemical performances for lithium-ion batteries. J Mater Sci: Mater Electron 32, 28223–28233 (2021).

Download citation