Skip to main content

Study on the photoluminescence properties and magnetization performance of Lu3+, Tb3+: CeF3 nanoparticles


A series of Lu3+, Tb3+: CeF3 nanoparticles were successfully prepared via the hydrothermal method. The results show that the nanoparticles exhibit obvious green emission after being effectively doped with Tb3+ ions, and the luminous intensity further increases with the increase of Lu3+ doping concentration. Hysteresis loops show that the magnetic susceptibility of Lu3+, Tb3+: CeF3 nanoparticles is 0.1310 emu/g under a magnetic field of 10,000 Oe. These proof-of-concept results show that Lu3+, Tb3+: CeF3 nanoparticles can be widely used in many important fields. It provides a theoretical basis for the combination of luminescent and magnetic properties of nanoparticles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    W. Xu, K. Kattel, J.Y. Park et al., Paramagnetic nanoparticle T1 and T2 MRI contrast agents. Phys. Chem. Chem. Phys. 14(37), 12687–12700 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    F. Bao, J.L. Yao, R.A. Gu, Synthesis of magnetic Fe2O3/Au core/shell nanoparticles for bio-separation and immunoassay based on surface-enhanced Raman spectroscopy. Langm. ACS J. Surf. Colloids 25(18), 10782–10787 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    Y. Wang, J. Dostalek, W. Knoll, Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance. Analyt. Chem. 83(16), 6202–6207 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Y. Ge et al., Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscale Res. Lett. 4(4), 287–295 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    N. Chekina et al., Fluorescent magnetic nanoparticles for biomedical applications. J. Mater. Chem. 21(21), 7630–7639 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    J.M. Vargas, A.A. McBride, J.B. Plumley et al., Synthesis and characterization of core/shell Fe3O4/ZnSe fluorescent magnetic nanoparticles. J. Appl. Phys. 109(7), 07B536 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    L.G. Jacobsohn, K.B. Sprinkle, S.A. Roberts et al., Fluoride nanoscintillators. J. Nanomater. (2011).

    Article  Google Scholar 

  8. 8.

    H. Guo, Photoluminescent properties of CeF3: Tb3+ nanodiskettes prepared by hydrothermal microemulsion. Appl. Phys. B 84(1), 365–369 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    J.J. Krebs, M. Rubinstein, P. Lubitz et al., Magnetic properties of permalloy-coated organic tubules. J. Appl. Phys. 70(10), 6404–6406 (1991).

    CAS  Article  Google Scholar 

  10. 10.

    S. Zhong, S. Wang, H. Xu et al., Facile synthesis of water-soluble YF3 and YF3: Ln3+ nanocrystals. Mater. Lett. 63(5), 530–532 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    N. Li, F.L. Zeng, Y. Wang et al., Synthesis and characterization of fluorinated polyurethane containing carborane in the main chain: thermal, mechanical and chemical resistance properties. Chin. J. Polym. Sci. 36(1), 85–97 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    J.F. Suyver, J. Grimm, K.W. Krämer et al., Highly efficient near-infrared to visible up-conversion process in NaYF4: Er3+, Yb3+. J. Lumin. 114(1), 53–59 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    S. Gai, P. Yang, X. Li et al., Monodisperse CeF3, CeF3: Tb3+, and CeF3: Tb3+@ LaF3 core/shell nanocrystals: synthesis and luminescent properties. J. Mater. Chem. 21(38), 14610–14615 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    A. Dhillon, S.K. Soni, D. Kumar, Enhanced fluoride removal performance by Ce–Zn binary metal oxide: adsorption characteristics and mechanism. J. Fluorine Chem. 199, 67–76 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    T. Zhu, T. Zhu, J. Gao et al., Enhanced adsorption of fluoride by cerium immobilized cross-linked chitosan composite. J. Fluorine Chem. 194, 80–88 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    J.V. Cizdziel, C. Tolbert, G. Brown, Direct analysis of environmental and biological samples for total mercury with comparison of sequential atomic absorption and fluorescence measurements from a single combustion event. Spectrochim. Acta, Part B 65(2), 176–180 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    P.R. Diamente, F.C.J.M.V. Veggel, Water-soluble Ln3+-Doped LaF3 nanoparticles: retention of strong luminescence and potential as biolabels. J. Fluoresc. 15(4), 543–551 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    O.A. Morozov, V.V. Pavlov, R.M. Rakhmatullin et al., Enhanced room-temperature ferromagnetism in composite CeO2/CeF3 nanoparticles. Phys. Status Solidi (RRL) 12(12), 1800318 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    S.E. Derenzo et al., Prospects for new inorganic scintillators. IEEE Trans. Nuclear. 37(2), 203–208 (1990).

    CAS  Article  Google Scholar 

  20. 20.

    W.W. Moses, S.E. Derenzo, Cerium fluoride, a new fast, heavy scintillator. IEEE Trans. Nuclear. 36(1), 173–176 (2002).

    Article  Google Scholar 

  21. 21.

    A.J. Wojtowicz, E. Berman, A. Lempicki, Stoichiometric cerium compounds as scintillators I CeF3. IEEE Trans. Nuclear. 39(5), 1542–1548 (1992).

    CAS  Article  Google Scholar 

  22. 22.

    J.K. Li et al., Crystal structure stabilization of gadolinium aluminum garnet (Gd3Al5O12) and photoluminescence properties. Key Eng. Mater. (2013).

    Article  Google Scholar 

  23. 23.

    L. Zhu et al., Morphological control and luminescent properties of CeF3 nanocrystals. J. Phys. Chem. C 111(16), 5898–5903 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    H. Zhang, Y. Chen, X. Zhu et al., Energy transfer mechanism of Ce3+→ Tb3+→ Eu3+ in Ba9Y2Si6O24. Opt. Mater. 104, 109958 (2020).

    CAS  Article  Google Scholar 

  25. 25.

    C. Zuo et al., Luminescent properties of Tb3+ and Gd3+ ions doped aluminosilicate oxyfluoride glasses. Spectrochim. Acta Part A 82(1), 406–409 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    C. Zhang et al., A novel scheme to acquire enhanced up-conversion emissions of Ho3+ and Yb3+ co-doped Sc2O3. Curr. Appl. Phys. (2019).

    Article  Google Scholar 

  27. 27.

    K. Shimamura, E.G. Villora, S. Nakkakita et al., Growth and scintillation characteristics of CeF3, PrF3 and NdF3 single crystals. J. Cryst. Growth 264(1–3), 208–215 (2004).

    CAS  Article  Google Scholar 

Download references


This work was supported by International Science and Technology Cooperation Project of Jilin Province Science, Technology Department (20200801038GH), Jilin Provincial Department Education (JJKH20200771KJ, JJKH20200758KJ, JJKH20200761KJ) and the Open Project of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (Jilin University) (No. 2021-19).

Author information



Corresponding authors

Correspondence to Chun Li, Fanming Zeng or Zhongmin Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leng, Z., Wang, X., Yang, W. et al. Study on the photoluminescence properties and magnetization performance of Lu3+, Tb3+: CeF3 nanoparticles. J Mater Sci: Mater Electron 32, 28098–28107 (2021).

Download citation