Skip to main content
Log in

Up-conversion luminescence properties of LuVO4: Yb3+/Tm3+/Er3+ submicron materials for high sensitivity temperature probing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a high-performance up-conversion submicron materials for Yb3+–Tm3+–Er3+ triple-doped lutetium vanadate (LuVO4) obtained via simple solid-state method. X-ray diffractometer results showed that the prepared LuVO4: Yb3+/Tm3+/Er3+ samples kept the crystal phase structure of the host LuVO4. Under 980 nm excitation, LuVO4:Yb3+/Tm3+ phosphors exhibited strong blue light emission. After doping of Er3+ ion the color of LuVO4: Yb3+/Tm3+/Er3+ phosphors were gradually changed from the blue to the green region in the CIE map. Next, the luminous color was evaluated by the correlated color temperature. The temperature-sensing characteristics of material were studied by fluorescence intensity ratio (FIR) technology which based on thermal coupling levels (TCLs) and non-TCLs, respectively. It was found that the maximum value of Sa2 is 0.03555 K−1@370 K based on the non-TCLs of 1G4 (Tm3+) and 2H11/2 (Er3+), which is higher than the sensitivity of Sa1 0.01004 K−1@370 K obtained through the TCLs of 4S3/2 (Er3+) and 2H11/2 (Er3+). For Yb3+/Tm3+/Er3+ co-doped LuVO4 up-conversion phosphors, the results demonstrate its great potential for fluorescence display and temperature probing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

No code usage involved in this paper.

References

  1. H. Zhang, S. Zhao, X. Wang, X. Ren, J. Ye, L. Huang, S. Xu, Journal of Materials Chemistry C. (2019). https://doi.org/10.1039/C9TC04965G

    Article  Google Scholar 

  2. Y. Liu, L. Meng, H. Wang, J. Jiao, M. Xing, Y. Peng, X. Luo, Y. Tian, Dalton Trans. (2021). https://doi.org/10.1039/D0DT03377D

    Article  Google Scholar 

  3. N.O. Nuñez, F. Cussó, E. Cantelar, B. Martin-Gracia, J.M. Fuente, A. Corral, M. Balcerzyk, M. Ocaña, Nanomaterials (2020). https://doi.org/10.3390/nano10010149

    Article  Google Scholar 

  4. A. Krasnikov, V. Tsiumra, L. Vasylechko, S. Zazubovich, Ya. Zhydachevskyy, J. Lumin. (2019). https://doi.org/10.1016/j.jlumin.2019.04.019

    Article  Google Scholar 

  5. D. Duan, Y. Wang, S. Jiang, L. Li, G. Xiang, X. Tang, Y. Li, X. Zhou, J. Lumin. (2019). https://doi.org/10.1016/j.jlumin.2019.116636

    Article  Google Scholar 

  6. Nuria O Nuñez, Fernando Cussó, Eugenio Cantelar, Beatriz Martin-Gracia, Jesús M de la Fuente, Ariadna Corral, Marcin Balcerzyk, Manuel Ocaña, Nanomaterials. (2020). https://doi.org/10.3390/nano10010149

  7. Y. Ma, G. Xiang, J. Zhang, Z. Liu, P. Zhou, W. Liu, X. Tang, S. Jiang, X. Zhou, L. Li, Y. Luo, Y. Jin, J. Alloy. Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.07.368

    Article  Google Scholar 

  8. H. Suo, X. Zhao, Z. Zhang, Y. Wu, C. Guo, ACS Appl. Mater. Interfaces. (2018). https://doi.org/10.1021/acsami.8b18184

    Article  Google Scholar 

  9. P. Peng, N. Wu, L. Ye, F. Jiang, W. Feng, F. Li, Y. Liu, M. Hong, ACS Nano (2020). https://doi.org/10.1021/acsnano.0c02601

    Article  Google Scholar 

  10. H. Wang, Z. Wang, Y. Tu, Y. Li, T. Xu, M. Yang, P. Wang, Y. Gu, Biomaterials (2020). https://doi.org/10.1016/j.biomaterials.2020.119765

    Article  Google Scholar 

  11. R.V. Perrella, P.C.S. Filho, Dalton Trans. (2020). https://doi.org/10.1039/c9dt04308j

    Article  Google Scholar 

  12. Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J.A. Piper, P. Xi, D. Jin, Nature (2017). https://doi.org/10.1038/nature21366

    Article  Google Scholar 

  13. Q. Qiang, Y. Wang, New J. Chem. (2019). https://doi.org/10.1039/C8NJ05079A

    Article  Google Scholar 

  14. W. Ge, M. Xu, J. Shi, J. Zhu, Y. Li, Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.123546

    Article  Google Scholar 

  15. Y. Zhao, X. Wang, Y. Zhang, Y. Li, X. Yao, J. Alloy. Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.154998

    Article  Google Scholar 

  16. H. Yu, J. Liu, H. Zhang, A.A. Kaminskii, Z. Wang, J. Wang, Laser Photonics Reviews. (2014). https://doi.org/10.1002/lpor.201400022

    Article  Google Scholar 

  17. J. Liao, L. Kong, M. Wang, Y. Sun, G. Gong, Opt. Mater. (2019). https://doi.org/10.1016/j.optmat.2019.109452

    Article  Google Scholar 

  18. D. Li, C. Liu, L. Jiang, Opt. Mater. (2015). https://doi.org/10.1016/j.optmat.2015.04.048

    Article  Google Scholar 

  19. X. Liu, R. Lei, F. Huang, D. Deng, H. Wang, S. Zhao, S. Xu, J. Lumin. (2019). https://doi.org/10.1016/j.jlumin.2019.01.065

    Article  Google Scholar 

  20. G. Zhang, Iva Milisavljevic, Eugeniusz Zych, Y. Wu, Scripta Materialia. 186 (2020). https://doi.org/10.1016/j.scriptamat.2020.04.011

  21. Y. Li, B. Chen, X. Zhao, Zhi. Wang, H. Lin, Journal of Alloys and Compounds. (2012). https://doi.org/10.1016/j.jallcom.2012.05.009

  22. C.D.S. Brites, P.P. Lima, N.J.O. Silva, A. Millán, V.S. Amaral, F. Palacio, L.D. Carlos, Nanoscale (2012). https://doi.org/10.1039/C2NR30663H

    Article  Google Scholar 

  23. G. Xiang, X. Liu, J. Zhang, Z. Liu, W. Liu, Y. Ma, S. Jiang, X. Tang, X. Zhou, L. Li, Y. Jin, Inorg. Chem. (2019). https://doi.org/10.1021/acs.inorgchem.9b01229

    Article  Google Scholar 

  24. P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, A. S. B. Sombra, Applied Physics Letters. (1998). https://doi.org/10.1063/1.121861

  25. Z. Wang, H. Jiao, J. Yang, Z. Fu, J. Lumin. (2019). https://doi.org/10.1016/j.jlumin.2018.10.034

    Article  Google Scholar 

  26. Q. Han, H. Hao, J. Yang, Z. Sun, J. Sun, Y. Song, Y. Wang, X. Zhang, J. Alloy. Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.02.047

    Article  Google Scholar 

  27. S. Sinha, M.K. Mahata, K. Kumar, New J. Chem. (2019). https://doi.org/10.1039/C9NJ00760A

    Article  Google Scholar 

  28. G. Chen, R. Lei, H. Wang, F. Huang, S. Zhao, S. X, Optical Materials. (2018). https://doi.org/10.1016/j.optmat.2018.01.039

  29. Z. Liu, D. Chen, J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03471-y

    Article  Google Scholar 

  30. J. Wu, X. Chen, F. Jiang, X. Feng, Q. Huang, Q. Lin, Physica B (2019). https://doi.org/10.1016/j.physb.2019.02.051

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Developing Project of Science and Technology of Jilin Province (Grant No. 202002040JC).

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

LC developed the idea for the study, LC, ZW and PC did the analyses, and XH, BZ and XC wrote the paper. The statements are not mandatory.

Corresponding author

Correspondence to Shuang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

We the undersigned declare that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere.

Consent for participate

All authors have read this manuscript and would like to participate in the journal submission.

Consent for publication

All authors have read this manuscript and would like to have it considered exclusively for publication in Materials in Electronics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Wang, Z., Cai, P. et al. Up-conversion luminescence properties of LuVO4: Yb3+/Tm3+/Er3+ submicron materials for high sensitivity temperature probing. J Mater Sci: Mater Electron 32, 28088–28097 (2021). https://doi.org/10.1007/s10854-021-07183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07183-9

Navigation