Skip to main content
Log in

Synthesis and structural characterization of binary PtNi alloy nanoparticles: investigating magnetic transition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, binary PtNi alloy nanoparticles were synthesized by one-pod reduction approach using modified polyol process with different atomic ratios of Pt and Ni. X-ray diffraction and Rietveld refinement analyses show well-defined single PtNi alloy formation of an fcc crystal structure with a space group of Fm\(\overline{3 }\)m. Increasing Pt content (from 0.25 to 0.75) in the PtNi alloy modified interatomic distance of Pt–Ni and increased the lattice constant from a = b = c = 0.3782 nm to a = b = c = 0.3834 nm and d(111)-space from 2.18 to 2.22 Å. The average particle size was determined using a scanning electron microscope and found to be below 10 nm for all NPs. The composition-dependent magnetic properties of PtNi alloy NPs were investigated by vibrating sample magnetometer as a function of temperature between 5 and 300 K and magnetic field up to ± 3 T. Two distinct transition temperatures were observed that the first is superparamagnetic transition below 24 K and superparamagnetic-to-ferromagnetic transition below 125 K. Maximum coercive field is found to be 902 Oe for Pt0.26Ni0.74 NPs. However, hysteresis loops do not saturate up to ± 3 T and a maximum value of 8.54 emu/g is recorded for Pt0.42Ni0.58 NPs due to the small particle size of 7.82 ± 0.03 nm. The maximum value of Keff is calculated as 2.61 \(\times\) 105 erg/cm3 for the 74% Ni sample due to the highest TB = 24 K. The maximum μfu as 0.39μB and minimum as 0.09μB (Ni atom) were calculated for Pt0.42Ni0.58 and Pt0.73Ni0.27 NPs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Dhand, N. Dwivedi, X.J. Loh, A.N. Jie Ying, N.K. Verma, R.W. Beuerman, R. Lakshminarayanan, S. Ramakrishna, RSC Adv. 5, 105003 (2015)

    Article  CAS  Google Scholar 

  2. A. Zaleska-Medynska, M. Marchelek, M. Diak, E. Grabowska, Adv. Colloid Interface Sci. 229, 80 (2016)

    Article  CAS  Google Scholar 

  3. Z. Zhu, Y. Zhai, S. Dong, ACS Appl. Mater. Interfaces 6, 16721 (2014)

    Article  CAS  Google Scholar 

  4. M. Martins, B. Šljukić, Ö. Metin, M. Sevim, C.A.C Sequeira, T. Şener, D.M.F. Santos, J. Alloys Compd. 718, 204 (2017)

    Article  CAS  Google Scholar 

  5. V. Abdelsayed, G. Glaspell, M. Nguyen, J.M. Howe, M. Samy El-Shall, Faraday Discuss. 138, 163 (2008)

    Article  CAS  Google Scholar 

  6. S. Sun, S. Anders, T. Thomson, J.E.E. Baglin, M.F. Toney, H.F. Hamann, C.B. Murray, B.D. Terris, J. Phys. Chem. B 107, 5419 (2003)

    Article  CAS  Google Scholar 

  7. A.M. Huízar-Félix, R. Cruz-Silva, J.M. Barandiarán, D.I. García-Gutiérrez, I. Orue, D. Merida, S. Sepúlveda-Guzmán, J. Alloys Compd. 678, 541 (2016)

    Article  Google Scholar 

  8. J.-J. Du, Y. Yang, R.-H. Zhang, X.-W. Zhou, Mater. Chem. Phys. 155, 47 (2015)

    Article  CAS  Google Scholar 

  9. P.K. Sahoo, B. Panigrahy, D. Bahadur, RSC Adv. 4, 48563 (2014)

    Article  CAS  Google Scholar 

  10. D. Kaya, I. Adanur, M. Akyol, F. Karadag, A. Ekicibil, J. Mol. Struct. 1224, 128999 (2021)

    Article  CAS  Google Scholar 

  11. D. Kaya, I. Adanur, M. Akyol, F. Karadag, A. Ekicibil, J. Alloys Compd. 876, 160157 (2021)

    Article  CAS  Google Scholar 

  12. F. Fiévet, Chem. Soc. Rev. 47, 5187 (2018)

    Article  Google Scholar 

  13. H. Yue, Y. Zhao, X. Ma, J. Gong, Chem. Soc. Rev. 41, 4218 (2012)

    Article  CAS  Google Scholar 

  14. Y.Y. Tong, Polyvinylpyrrolidone (pvp) for enhancing the activity and stability of platinum-based electrocatalysts. U.S. Patent 14/380,301, 2015

  15. F. Papa, C. Negrila, A. Miyazaki, I. Balint, J. Nanopart. Res. 13, 5057 (2011)

    Article  CAS  Google Scholar 

  16. N.R. Mathe, S.S. Nkosi, D.E. Motaung, M.R. Scriba, N.J. Coville, Electrocatalysis 6, 274 (2015)

    Article  CAS  Google Scholar 

  17. Y.-K. Peng, C.-L. Liu, H.-C. Chen, S.-W. Chou, W.-H. Tseng, Y.-J. Tseng, C.-C. Kang, J.-K. Hsiao, P.-T. Chou, J. Am. Chem. Soc. 135, 18621 (2013)

    Article  CAS  Google Scholar 

  18. B.H. Kim, J. Am. Chem. Soc. 133, 12624 (2011)

    Article  CAS  Google Scholar 

  19. P. Sahu, B.L.V. Prasad, Langmuir 30, 10143 (2014)

    Article  CAS  Google Scholar 

  20. H. Yang, C. Coutanceau, J.-M. Léger, N. Alonso-Vante, C. Lamy, J. Electroanal. Chem. 576, 305 (2005)

    Article  CAS  Google Scholar 

  21. Y. Yamauchi, S. Sadasivan Nair, T. Momma, T. Ohsuna, T. Osaka, K. Kuroda, J. Mater. Chem. 16, 2229 (2006)

    Article  CAS  Google Scholar 

  22. Z. Wei, T. Xia, J. Ma, W. Feng, J. Dai, Q. Wang, P. Yan, Mater. Charact. 58, 1019 (2007)

    Article  CAS  Google Scholar 

  23. S. Mourdikoudis, K. Simeonidis, A. Vilalta-Clemente, F. Tuna, I. Tsiaoussis, M. Angelakeris, C. Dendrinou-Samara, O. Kalogirou, J. Magn. Magn. Mater. 321, 2723 (2009)

    Article  CAS  Google Scholar 

  24. U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534 (2011)

    Article  CAS  Google Scholar 

  25. A. Martínez de Yuso, J.-M. Le Meins, Y. Oumellal, V. Paul-Boncour, C. Zlotea, C. Matei Ghimbeu, J. Nanopart. Res. 18, 380 (2016)

    Article  Google Scholar 

  26. Y. Liu, Mater. Res. Bull. 48, 721 (2013)

    Article  CAS  Google Scholar 

  27. D.R. Baganizi, E. Nyairo, S.A. Duncan, S.R. Singh, V.A.J.N. Dennis, Nanomaterials 7, 165 (2017)

    Article  Google Scholar 

  28. A. Rahma, M.M. Munir, Khairurrijal, A. Prasetyo, V. Suendo, H. Rachmawati, Biol. Pharm. Bull. 39, 163 (2016)

  29. I. Castellanos-Rubio, M. Insausti, I.G. de Muro, D.C. Arias-Duque, J.C. Hernández-Garrido, T. Rojo, L. Lezama, J. Nanopart. Res. 17, 229 (2015)

    Article  Google Scholar 

  30. C. Binns, Frontiers of Nanoscience (Elsevier, Amsterdam, 2014), p. 1

    Google Scholar 

  31. D. Fruchart, R. Fruchart, P. Heritier, K. Kanematsu, R. Madar, S. Misawa, Y. Nakamura, P. Webster, K.R.A. Ziebeck, Magnetic Properties of Metals (Springer-Verlag, Berlin, 1991), p. 186

    Google Scholar 

  32. S. Zhu, K. Sun, Q.Y. Zhang, X.T. Zu, L.M. Wang, R.C. Ewing, J. Appl. Phys. 94, 5648 (2003)

    Article  CAS  Google Scholar 

  33. M.M. Bezerra-Neto, M.S. Ribeiro, B. Sanyal, A. Bergman, R.B. Muniz, O. Eriksson, A.B. Klautau, Sci. Rep. 3, 3054 (2013)

    Article  Google Scholar 

  34. H. Huang, D. Sun, X. Wang, Chin. Sci. Bull. 57, 3071 (2012)

    Article  CAS  Google Scholar 

  35. S. Bedanta, W. Kleemann, J. Phys. D 42, 013001 (2009)

    Article  Google Scholar 

  36. M. Knobel, W. Nunes, L. Socolovsky, E. De Biasi, J. Vargas, J. Denardin, J. Nanosci. Nanotechnol. 8, 2836 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Dr. Faruk Karadag and Assoc. Prof. Dr. Ahmet Ekicibil for valuable discussion.

Author information

Authors and Affiliations

Authors

Contributions

DK: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Validation; Roles/Writing—original draft; Writing—review & editing.

Corresponding author

Correspondence to Dogan Kaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1624 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, D. Synthesis and structural characterization of binary PtNi alloy nanoparticles: investigating magnetic transition. J Mater Sci: Mater Electron 32, 27975–27986 (2021). https://doi.org/10.1007/s10854-021-07178-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07178-6

Navigation