Skip to main content
Log in

Optimisation of microwave absorption properties of Fe-substituted Y2Co17−xFex soft-magnetic composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The increase in electromagnetic wave pollution at high frequency (gigahertz band) has led to an increasing demand for more effective microwave absorption materials (MAMs). This study aims to investigate magneto-crystalline anisotropy materials as MAMs. Magnetic and microwave absorption properties of Y2Co17−xFex (x = 0, 5, 9, 13, 17) are reported in this study. As the Fe content increases, the magneto-crystalline anisotropy of Y2Co17−xFex changes from planar anisotropy to axis, then to cone, and eventually to plane. Meanwhile, the variation trend of the magnetization (Ms) value increases first and then decreases, reaching a maximum at = 9. The Y2Co17−xFex/paraffin composites (x = 0, 13, 17) with the planar anisotropy show stronger reflection loss (RL) than that composite (= 5) with the uniaxial anisotropy. The strongest RL value is achieved for the conical anisotropy composites (x = 9). This composite, with conical anisotropy and highest Ms, exhibits the highest gigahertz frequency permeability, which is advantageous for improving the impedance matching and attenuation abilities of microwave absorption. The Y2Co8Fe9/paraffin composite exhibits a reflection loss value of − 46.9 dB and effective absorption bandwidth (EAB, RL < − 10 dB) of 4.74 GHz with a thickness of 2.0 mm at 10.2 GHz, suggesting its applicability as an efficient microwave absorbent in the gigahertz frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Yilmaz, L. Tumkaya, K. Akyildiz et al., J. Maternal-Fetal Neonatal Med. 30, 1355 (2017). https://doi.org/10.1080/14767058.2016.1214124

    Article  CAS  Google Scholar 

  2. S.N. Narayanan, R.S. Kumar, B.K. Potu, S. Nayak, M. Mailankot, Clinics 64, 231 (2009). https://doi.org/10.1590/s1807-59322009000300014

    Article  Google Scholar 

  3. Y. Bhattacharjee, D. Chatterjee, S. Bose, ACS Appl. Mater. Interfaces 10, 30762 (2018). https://doi.org/10.1021/acsami.8b10819

    Article  CAS  Google Scholar 

  4. L. Long, W. Zhou, P. Xiao, Y. Li, J. Mater. Sci. Mater. Electron. 30, 3359 (2019). https://doi.org/10.1007/s10854-018-00609-x

    Article  CAS  Google Scholar 

  5. X. Guo, Z. Yao, H. Lin et al., J. Magn. Magn. Mater. 485, 244 (2019). https://doi.org/10.1016/j.jmmm.2019.04.059

    Article  CAS  Google Scholar 

  6. Y. Yao, C. Zhang, Y. Fan, J Zhan, Adv. Powder Technol. 27, 2285 (2016). https://doi.org/10.1016/j.apt.2016.08.022

    Article  CAS  Google Scholar 

  7. M.S. Cao, J. Yang, W.L. Song et al., ACS Appl. Mater. Interfaces 4, 6949 (2012). https://doi.org/10.1021/am3021069

    Article  CAS  Google Scholar 

  8. K. Manna, S.K. Srivastava, ACS Sustain. Chem. Eng. 5, 10710 (2017). https://doi.org/10.1021/acssuschemeng.7b02682

    Article  CAS  Google Scholar 

  9. X. Huang, J. Zhang, Z. Liu et al., J. Alloys Compd. 648, 1072 (2015). https://doi.org/10.1016/j.jallcom.2015.07.073

    Article  CAS  Google Scholar 

  10. Y. Yuan, S. Wei, Y. Liang, B. Wang, Y. Wang, Materials (2020). https://doi.org/10.3390/ma13235331

    Article  Google Scholar 

  11. Y. Zhao, L. Liu, J. Han, W. Wu, G. Tong, J. Alloys Compd. 728, 100 (2017). https://doi.org/10.1016/j.jallcom.2017.08.238

    Article  CAS  Google Scholar 

  12. G. Qiao, Q. Hu, P. Zhang et al., J. Alloys Compd. 825, 154179 (2020). https://doi.org/10.1016/j.jallcom.2020.154179

    Article  CAS  Google Scholar 

  13. D. He, Z. Dou, J. Zhang et al., J. Magn. Magn. Mater. 513, 167191 (2020). https://doi.org/10.1016/j.jmmm.2020.167191

    Article  CAS  Google Scholar 

  14. W. Yang, Y. Zhang, G. Qiao et al., Acta Mater. 145, 331 (2018). https://doi.org/10.1016/j.actamat.2017.12.042

    Article  CAS  Google Scholar 

  15. G. Tan, Y. Zhang, L. Qiao, T. Wang, J. Wang, F. Li, Phys. B 477, 52 (2015). https://doi.org/10.1016/j.physb.2015.08.012

    Article  CAS  Google Scholar 

  16. L.Z. Li, J.Z. Wei, Y.H. Xia et al., Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4889806

    Article  Google Scholar 

  17. J. Yang, W. Yang, F. Li, Y. Yang, J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.jmmm.2019.165961

    Article  Google Scholar 

  18. T. Wang, C. Pan, Y. Wang et al., J. Magn. Magn. Mater. 354, 12 (2014). https://doi.org/10.1016/j.jmmm.2013.10.045

    Article  CAS  Google Scholar 

  19. Z.W. Li, Y.P. Wu, G.Q. Lin, L. Chen, J. Magn. Magn. Mater. 310, 145 (2007). https://doi.org/10.1016/j.jmmm.2006.08.003

    Article  CAS  Google Scholar 

  20. X. Gu, G. Tan, S. Chen et al., J. Magn. Magn. Mater. 424, 39 (2016). https://doi.org/10.1016/j.jmmm.2016.10.025

    Article  CAS  Google Scholar 

  21. R. Han, H. Yi, J. Wei, L. Qiao, T. Wang, F. Li, Appl. Phys. A 108, 665 (2012). https://doi.org/10.1007/s00339-012-6948-9

    Article  CAS  Google Scholar 

  22. L.-X. Lian, L.J. Deng, M. Han, W. Tang, S.-D. Feng, J. Appl. Phys. 101, 207 (2007). https://doi.org/10.1063/1.2712957

    Article  CAS  Google Scholar 

  23. C. He, S. Pan, L. Cheng, X. Liu, Y. Wu, J. Rare Earths 33, 271 (2015). https://doi.org/10.1016/s1002-0721(14)60414-2

    Article  CAS  Google Scholar 

  24. S. Yh Liu, L. Pan, J. Cheng, L. Yu, Huang (2020) J. Mater. Sci. Mater. Electron. https://doi.org/10.1007/s10854-020-03668-1

    Article  Google Scholar 

  25. X. Liu, L. Qiao, F. Li, J. Phys. D: Appl. Phys. (2010). https://doi.org/10.1088/0022-3727/43/16/165004

    Article  Google Scholar 

  26. Y. Matsuura, S. Hirosawa, H. Yamamoto, S. Fujimura, M. Sagawa, Appl. Phys. Lett. 46, 308 (1985). https://doi.org/10.1063/1.95668

    Article  CAS  Google Scholar 

  27. A.M. Nicolson, IEEE Trans. Instrum. Meas. (1970). https://doi.org/10.1109/TIM.1970.4313932

    Article  Google Scholar 

  28. W.B. Weir, Proc. IEEE (1974). https://doi.org/10.1109/PROC.1974.9382

    Article  Google Scholar 

  29. X.C. Kou, T.S. Zhao, R. Grossinger, H.R. Kirchmayr, X. Li, F.R. de Boer, Phys. Rev. B Condens. Matter. 47, 3231 (1993). https://doi.org/10.1103/physrevb.47.3231

    Article  CAS  Google Scholar 

  30. S. Zhang, B. Shen, H. Zhang et al., J. Appl. Phys. 83, 5326 (1998). https://doi.org/10.1063/1.367359

    Article  CAS  Google Scholar 

  31. J. Sun, W. Wang, Q. Yue, Materials 9, 231 (2016). https://doi.org/10.3390/ma9040231

    Article  CAS  Google Scholar 

  32. Q. Li, S. Yan, X. Wang et al., Acta Mater. 98, 190 (2015). https://doi.org/10.1016/j.actamat.2015.07.038

    Article  CAS  Google Scholar 

  33. C. Singh, S.B. Narang, I.S. Hudiara, Y. Bai, K. Marina, Mater. Lett. 63, 1921 (2009)

    Article  CAS  Google Scholar 

  34. D. Liu, Y. Zhang, C. Zhou et al., J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.152861

    Article  Google Scholar 

  35. J. Ouyang, Z. He, Y. Zhang, H. Yang, Q. Zhao, ACS Appl. Mater. Interfaces 11, 39304 (2019). https://doi.org/10.1021/acsami.9b11430

    Article  CAS  Google Scholar 

  36. X. Zeng, X. Cheng, R. Yu, G.D. Stucky, Carbon 168, 606 (2020). https://doi.org/10.1016/j.carbon.2020.07.028

    Article  CAS  Google Scholar 

  37. Y. Wang, W. Zhou, G. Zeng et al., Carbon 175, 233 (2021). https://doi.org/10.1016/j.carbon.2021.01.001

    Article  CAS  Google Scholar 

  38. H. Liu, Y. Li, M. Yuan et al., ACS Appl. Mater. Interfaces. 10, 22591 (2018). https://doi.org/10.1021/acsami.8b05211

    Article  CAS  Google Scholar 

  39. A. Ling, J. Pan, G. Tan et al., J. Alloys Compd. 787, 1097 (2019). https://doi.org/10.1016/j.jallcom.2019.02.164

    Article  CAS  Google Scholar 

  40. T. Wu, Y. Zhao, Y. Li, W. Wu, G. Tong, ChemCatChem 9, 3486 (2017). https://doi.org/10.1002/cctc.201700437

    Article  CAS  Google Scholar 

  41. C. Ge, L. Wang, G. Liu, T. Wang, J. Alloys Compd. 767, 173 (2018). https://doi.org/10.1016/j.jallcom.2018.07.081

    Article  CAS  Google Scholar 

  42. Y. Yuan, S. Wei, Y. Liang et al., J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2020.166791

    Article  Google Scholar 

  43. W. Zhou, Y. Li, L. Long, H. Luo, Y. Wang, J. Am. Ceram. Soc. 103, 6822 (2020). https://doi.org/10.1111/jace.17389

    Article  CAS  Google Scholar 

  44. F. Chen, H. Luo, Y. Cheng et al., Compos. Part A: Appl. Sci. Manuf. 140, 106141 (2020)

    Article  Google Scholar 

  45. Y. Liu, Y. Lin, H. Yang, J. Alloys Compd. 805, 130 (2019). https://doi.org/10.1016/j.jallcom.2019.07.006

    Article  CAS  Google Scholar 

  46. Z. Gao, Z. Jia, J. Zhang, A. Feng, Z. Huang, G. Wu, J. Mater. Sci. Mater. Electron. 30, 13474 (2019). https://doi.org/10.1007/s10854-019-01715-0

    Article  CAS  Google Scholar 

  47. S. Singh, A. Kumar, S. Agarwal, D. Singh, J. Magn. Magn. Mater. 503, 166616 (2020). https://doi.org/10.1016/j.jmmm.2020.166616

    Article  CAS  Google Scholar 

  48. M.-Q. Ning, M.-M. Lu, J.-B. Li et al., Nanoscale 7, 15734 (2015). https://doi.org/10.1039/c5nr04670j

    Article  CAS  Google Scholar 

  49. S. Tyagi, H.B. Baskey, R.C. Agarwala, V. Agarwala, TC Shami, Ceram. Int. 37, 2631 (2011). https://doi.org/10.1016/j.ceramint.2011.04.012

    Article  CAS  Google Scholar 

  50. H. Zhao, Z. Zhu, C. Xiong, X. Zheng, Q. Lin, RSC Adv. 6, 16413 (2016). https://doi.org/10.1039/c5ra27179g

    Article  CAS  Google Scholar 

  51. L. Wang, H. Xing, Z. Liu, Z. Shen, X. Sun, G. Xu, RSC Adv. 6, 97142 (2016). https://doi.org/10.1039/c6ra21092a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Ningbo Key Project of Scientific and Technical Innovation 2025 (Grant No. 2018B10085 and 2018B10031), Zhejiang Provincial Key Research and Development Projects (Grant No. 2021C01033), the Science and Technology Service Network Initiative regional Key Project of The Chinese Academy of Sciences (Grant No. KFJ-STS-QYZD-2021-07-002), and K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoguo Tan or Xincai Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Tan, G., Man, Q. et al. Optimisation of microwave absorption properties of Fe-substituted Y2Co17−xFex soft-magnetic composites. J Mater Sci: Mater Electron 32, 27849–27859 (2021). https://doi.org/10.1007/s10854-021-07167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07167-9

Navigation