Skip to main content

Partially oxidized Ti3C2Tx MXene-sensitive material-based ammonia gas sensor with high-sensing performances for room temperature application


It is highly desirable to develop sensors with high response and selectivity at room temperature of operating temperature. Besides, efficient and low-cost sensors are also required for future social development. In this paper, it is developed a detector with two-dimensional (2D) material of Ti3C2Tx MXene sensing material by a chemical etchant for ammonia sensing, which shows high response and excellent selectivity to ammonia (NH3) at room temperature of operating temperature. A key point of this work is the thermal treatment temperature of the sensing ceramic tube at 280 °C, which removes the adsorbed water and partially oxidized the material. In ambient condition, Ti3C2Tx MXene-280 shows the response to 500 ppm NH3 with 147 %, and the counterpart response and recovery time are 67 and 157 s at room temperature of operating temperature, respectively. In the environment of different relative humidity, its sensing performance is maintained at around 50 % of the initial performance, which shows great moisture resistance. The higher response and good selectivity of Ti3C2Tx MXene-280 sensor to NH3 at room temperature are ascribed to the powerful hydrogen bond formed between the OH, O2 functional groups on Ti3C2Tx MXene-280 and NH3, as well as the synergistic effect of TiO2 and Ti3C2Tx MXene, generated after heating treatment, which increases the electron transport efficiency. The results demonstrated that the facilely designed Ti3C2Tx MXene-280 sensor is believed to contribute to developing future portable and selective sensing electronics at room temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Y.Y. Broza, R. Vishinkin, O. Barash, M.K. Nakhleh, H. Haick, Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem. Soc. Rev. 47, 4781–4859 (2018)

    CAS  Article  Google Scholar 

  2. 2.

    G. Lubes, M. Goodarzi, Analysis of volatile compounds by advanced analytical techniques and multivariate chemometrics. Chem. Rev. 117, 6399–6422 (2017)

    CAS  Article  Google Scholar 

  3. 3.

    M. Righettoni, A. Tricoli, S. Gass, A. Schmid, A. Amann, S.E. Pratsinis, Breath acetone monitoring by portable Si: WO3 gas sensors. Anal. Chim. Acta 738, 69–75 (2012)

    CAS  Article  Google Scholar 

  4. 4.

    Z.W. Weitz, A.J. Birnbaum, P.A. Sobotka, E.J. Zarling, J.L. Skosey, High breath pentane concentrations during acute myocardial infarction. Lancet 337, 933–935 (1991)

    CAS  Article  Google Scholar 

  5. 5.

    S. Mendis, P.A. Sobotka, D.E. Euler, Expired hydrocarbons in patients with acute myocardial infarction. Free Radic. Res. 23, 117–122 (1995)

    CAS  Article  Google Scholar 

  6. 6.

    B. Timmer, W. Olthuis, A. Berg, Ammonia sensors and their applications: a review. Sens. Actuators B 107, 666–677 (2005)

    CAS  Article  Google Scholar 

  7. 7.

    L. Zhang, K. Khan, J. Zou, H. Zhang, Y. Li, Recent advances in emerging 2D material-based gas sensors: potential in disease diagnosis. Adv. Mater. Interfaces 6, 1901329 (2019)

    Article  Google Scholar 

  8. 8.

    W. Yan, W. Zeng, G. Wu, W. Jiang, D. Wei, M. Ling, H. Zhou, C. Guo, Raspberry-like hollow SnO2-based nanostructures for sensing VOCs and ammonia. J. Mater. Sci.: Mater. Electron. 31, 14165–14173 (2020)

    CAS  Google Scholar 

  9. 9.

    X. Xing, Y. Yang, Z. Yan, Y. Hu, T. Zou, Z. Wang, Y. Wang, CdO-Ag-ZnO nanocomposites with hierarchical porous structure for effective VOCs gas sensing properties. Ceram. Int. 45, 4322–4334 (2018)

    Article  Google Scholar 

  10. 10.

    D. Punetha, S.K. Pandey, Enhancement and optimization in sensing characteristics of ammonia gas sensor based on light assisted nanostructured WO3 thin film. IEEE Sens. J. 20, 14617–14623 (2020)

    CAS  Article  Google Scholar 

  11. 11.

    I. Venditti, I. Fratoddi, M.V. Russo, A. Bearzotti, A nanostructured composite based on polyaniline and gold nanoparticles: synthesis and gas sensing properties. Nanotechnology 24, 155503 (2013)

    Article  Google Scholar 

  12. 12.

    F. Rigoni, S. Freddi, S. Pagliara, G. Drera, L. Sangaletti, J.M. Suisse, M. Bouvet, A.M. Malovichko, A.V. Emelianov, I.I. Bobrinetskiy, Humidity-enhanced sub-ppm sensitivity to ammonia of covalently functionalized single-wall carbon nanotube bundle layers. Nanotechnology 28, 255502 (2017)

    CAS  Article  Google Scholar 

  13. 13.

    K. Vikrant, V. Kumar, K.H. Kim, Graphene materials as a superior platform for advanced sensing strategies against gaseous ammonia. J. Mater. Chem A 6, 22391–22410 (2018)

    CAS  Article  Google Scholar 

  14. 14.

    Y.G. Song, G.S. Kim, J.M. Suh, M.S. Noh, G.S. Kim, K.S. Choi, B. Jeong, S. Kim, H.W. Jang, B.K. Ju, C.Y. Kang, Ionic-activated chemiresistive gas sensors for room-temperature operation. Small 15, 1902065 (2019)

    Article  Google Scholar 

  15. 15.

    R.A. Soomro, S. Jawaid, Q. Zhu, Z. Abbas, B. Xu, A mini-review on MXenes as versatile substrate for advanced sensors. Chin. Chem. Lett. 31, 922–930 (2020)

    CAS  Article  Google Scholar 

  16. 16.

    B. Naguib, B. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011)

    CAS  Article  Google Scholar 

  17. 17.

    W. Bao, L. Liu, C. Wang, S. Choi, D. Wang, G. Wang, Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 8, 1702485 (2018)

    Article  Google Scholar 

  18. 18.

    Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo, J. Liang, D. Han, R. Lyu, C. Qi, W. Lv, F. Kang, Q.H. Yang, Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31, 1902432 (2019)

    CAS  Article  Google Scholar 

  19. 19.

    J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017)

    Article  Google Scholar 

  20. 20.

    L. Wang, L. Chen, P. Song, C. Liang, Y. Lu, H. Qiu, Y. Zhang, J. Kong, J. Gu, Fabrication on the annealed Ti3C2Tx MXene/epoxy nanocomposites for electromagnetic interference shielding application. Composites B 171, 111–118 (2019)

    CAS  Article  Google Scholar 

  21. 21.

    X.F. Yu, Y.C. Li, J.B. Cheng, Z.B. Liu, Q.Z. Li, W.Z. Li, X. Yang, B. Xiao, Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interfaces 7, 13707–13713 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    S.J. Kim, H.J. Koh, C.E. Ren, K. Maleski, S.Y. Cho, B. Anasori, C.K. Kim, Y.K. Choi, J. Kim, Y. Gogotsi, H.T. Jung, Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018)

    CAS  Article  Google Scholar 

  23. 23.

    H.J. Koh, S.J. Kim, K. Maleski, S.Y. Cho, Y.J. Kim, C.W. Ahn, Y. Gogotsi, H.T. Jung, Enhanced selectivity of MXene gas sensors through metal ion intercalation: in situ X-ray diffraction study. ACS Sens. 4, 1365–1372 (2019)

    CAS  Article  Google Scholar 

  24. 24.

    M. Wu, M. He, Q. Hu, Q. Wu, G. Sun, L. Xie, Z. Zhang, Z. Zhu, A. Zhou, Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens. 4, 2763–2770 (2019)

    CAS  Article  Google Scholar 

  25. 25.

    W. Yuan, K. Yang, H. Peng, F. Li, F. Yin, A flexible VOCs sensor based on a 3D MXene framework with a high sensing performance. J. Mater. Chem. A 6, 18116–18124 (2018)

    CAS  Article  Google Scholar 

  26. 26.

    Z. Zhu, C. Liu, F. Jiang, J. Liu, X. Ma, P. Liu, J. Xu, L. Wang, R. Huang, Flexible and lightweight Ti3C2Tx MXene@Pd colloidal nanoclusters paper film as novel H2 sensor. J. Hazard. Mater. 399, 123054 (2020)

    CAS  Article  Google Scholar 

  27. 27.

    L. Yao, Y. Li, Y. Ran, Y. Yang, R. Zhao, L. Su, Y. Kong, D. Ma, Y. Chen, Y. Wang, Construction of novel Pd–SnO2 composite nanoporous structure as a high-response sensor for methane gas. J. Alloys Compd. 826, 154063 (2020)

    CAS  Article  Google Scholar 

  28. 28.

    M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    I. Persson, J. Halim, T.W. Hansen, J.B. Wagner, V. Darakchieva, J. Palisaitis et al., How much oxygen can a MXene surface take before it breaks? Adv. Funct. Mater. 30, 1909005 (2020)

    CAS  Article  Google Scholar 

  30. 30.

    I. Persson, L.Å. Näslund, J. Halim, M.W. Barsoum, V. Darakchieva, J. Palisaitis, J. Rosen, P.O.Å. Persson, On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum. 2D Materials 5, 015002 (2020)

    Google Scholar 

  31. 31.

    W.Y. Chen, X. Jiang, S.N. Lai, D. Peroulis, L. Stanciu, Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 11, 1302 (2020)

    CAS  Article  Google Scholar 

  32. 32.

    A. Hermawan, B. Zhang, A. Taufik, Y. Asakura, T. Hasegawa, J. Zhu, P. Shi, S. Yin, CuO nanoparticles/Ti3C2Tx MXene hybrid nanocomposites for detection of toluene gas. ACS Appl. Nano Mater. 3, 4755–4766 (2020)

    CAS  Article  Google Scholar 

  33. 33.

    H. Pazniak, I.A. Plugin, M.J. Loes, T.M. Inerbaev, I.N. Burmistrov, M. Gorshenkov, J. Polcak, A.S. Varezhnikov, M. Sommer, D.V. Kuznetsov, M. Bruns, F.S. Fedorov, N.S. Vorobeva, A. Sinitskii, V.V. Sysoev, Partially oxidized Ti3C2Tx MXenes for fast and selective detection of organic vapors at part-per-million concentrations. ACS Appl. Nano Mater. 3, 3195–3204 (2020)

    CAS  Article  Google Scholar 

  34. 34.

    Z. Yang, A. Liu, C. Wang, F. Liu, J. He, S. Li, J. Wang, R. You, X. Yan, P. Sun, Y. Duan, G. Lu, Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 4, 1261–1269 (2019)

    CAS  Article  Google Scholar 

  35. 35.

    E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi, D.J. Kim, Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9, 37184–37190 (2017)

    CAS  Article  Google Scholar 

  36. 36.

    Y.R. Choi, Y.G. Yoon, K.S. Choi, J.H. Kang, Y.S. Shim, Y.H. Kim, H.J. Chang, J.H. Lee, C.R. Park, S.Y. Kim, H.W. Jang, Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon 91, 178–187 (2015)

    CAS  Article  Google Scholar 

  37. 37.

    E.H. Weber, Room-temperature chemisorption mechanism of oxygen at CdS surfaces by photoconductivity investigations. Phys. Status Solidi (A) 1, 665–678 (1970)

    CAS  Article  Google Scholar 

  38. 38.

    Y. Takao, K. Miyazaki, Y. Shimizu, M. Egashira, High ammonia sensitive semiconductor gas sensors with double-layer structure and interface electrodes. J. Electrochem. Soc. 141, 1028–1034 (1994)

    CAS  Article  Google Scholar 

  39. 39.

    L.B. Fenn, R. Escarzaga, Ammonia volatilization from surface applications of ammonium compounds on calcareous. Soil Sci. Soc. Am. J. 40, 537–541 (1976)

    CAS  Article  Google Scholar 

Download references


This work is supported by the National Natural Science Foundation of China (Nos. 61761047 and 41876055), Yunnan University’s Research Innovation Fund for Graduate Students (No. 2020173), and Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province.

Author information



Corresponding authors

Correspondence to Xuechun Xiao or Yude Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, L., Tian, X., Cui, X. et al. Partially oxidized Ti3C2Tx MXene-sensitive material-based ammonia gas sensor with high-sensing performances for room temperature application. J Mater Sci: Mater Electron 32, 27837–27848 (2021).

Download citation