Skip to main content
Log in

NOA61 photopolymer as an interface for Al/NOA61/p-Si/Al heterojunction MPS device

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of the NOA61 photopolymer organic interlayer on the electrical and dielectric properties of the Al/NOA61/p-Si/Al metal-polymer-semiconductor (MPS) device has been reported the first time. The device parameters of the device such as rectification ratio (RR), ideality factor (n), and barrier height (ΦB) were determined from the current–voltage (IV) measurements according to thermionic emission theory (TE). Series resistance, RS, values were also calculated by Norde and Cheung methods in the range of 2.4–3 kΩ. According to the reverse bias IV measurements, the current was governed by Frenkel–Poole Emission (FPE) in the entire region. The voltage-dependent capacitance (C) and the conductance (G/ω) measurements were investigated at particular frequencies between 20 kHz and 1 MHz. The dielectric constant (ε′), dielectric loss (ε″), loss tangent (tanδ), and the complex electric modulus (M) were calculated using the measured C and G parameters, and it was seen that the interface states and surface dipoles at the interfacial layer were effective in the behavior of the device in alternating current. Additionally, the morphological properties of the thin film were studied by scanning electron microscopy (SEM). We observed that (NOA61) organic interlayer may be a noticeable alternative to a variety of electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Not applicable.

References

  1. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  2. E.H. Rhoderick, R.H. Williams, Metal Semiconductor Contacts, 2nd edn. (Clarendon Press, Oxford, 1988)

    Google Scholar 

  3. M.E. Aydin, F. Yakuphanoglu, J.H. Eom, D.H. Hwang, Physica B 387, 239 (2007). https://doi.org/10.1016/j.physb.2006.04.012

    Article  CAS  Google Scholar 

  4. S. Altindal, J. Farazin, G. Pirgholi-Givi, E. Maril, Y. Azizian-Kalandaragh, Physica B 582, 411958 (2020). https://doi.org/10.1016/j.physb.2019.411958

    Article  CAS  Google Scholar 

  5. O. Gullu, S. Aydogan, A. Turut, Microelectron. Eng. 85, 1647 (2008). https://doi.org/10.1016/j.mee.2008.04.003

    Article  CAS  Google Scholar 

  6. Ş Altındal, S. Karadeniz, N. Tuğluoğlu, A. Tataroğlu, Solid-State Electron. 47(10), 1847 (2003). https://doi.org/10.1016/S0038-1101(03)00182-5

    Article  CAS  Google Scholar 

  7. O. Gullu, O. Pakma, A. Turut, J. Appl. Phys. 111, 044503 (2012). https://doi.org/10.1063/1.3684989

    Article  CAS  Google Scholar 

  8. V.R. Reddy, Thin Solid Films 556, 300 (2014). https://doi.org/10.1016/j.tsf.2014.01.036

    Article  CAS  Google Scholar 

  9. C. Tozlu, A. Mutlu, Synth. Met. 211, 99 (2016). https://doi.org/10.1016/j.synthmet.2015.11.023

    Article  CAS  Google Scholar 

  10. A. Tataroğlu, Ş Altındal, Y. Azizian-Kalandaragh, Physica B 576, 411733 (2020). https://doi.org/10.1016/j.physb.2019.411733

    Article  CAS  Google Scholar 

  11. S. Khalifeh, Polymers in Organic Electronics (ChemTec Publishing, Toronto, 2020). https://doi.org/10.1016/B978-1-927885-67-3.50007-9

    Book  Google Scholar 

  12. Norland Products Incorporated, Norland Optical Adhesive 61 Data Sheet (Norland, Cranbury, 2009)

  13. https://www.norlandprod.com/adhesives/NOA%2061.html. Accessed 22 Sept 2021

  14. D. Chemisana, M.V. Collados, M. Quintanilla, J. Atencia, Appl. Energy 110, 227 (2013). https://doi.org/10.1016/j.apenergy.2013.04.049

    Article  CAS  Google Scholar 

  15. T.M. Grant, K.L.C. Kaller, T.J. Coathup, N.A. Rice, K. Hinzer, B.H. Lessard, Org. Electron. 87, 105976 (2020). https://doi.org/10.1016/j.orgel.2020.105976

    Article  CAS  Google Scholar 

  16. R. Guertin, M.-A. Bianki, C. Lemieux-Leduc, Y.-A. Peter, Sens. Actuators B 335, 129655 (2021). https://doi.org/10.1016/j.snb.2021.129655

    Article  CAS  Google Scholar 

  17. P.A. Mohammed, Eur. Polym. J. 139, 109950 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109950

    Article  CAS  Google Scholar 

  18. W. Mönch, H. Zappe, Comprehensive Microsystems (Elsevier, Amsterdam, 2008). https://doi.org/10.1016/B978-044452190-3.00039-2

    Book  Google Scholar 

  19. M. Montecchi, Q. Ingram, Nucl. Instrum. Methods Phys. Res. Sect. A 465, 329 (2001). https://doi.org/10.1016/S0168-9002(01)00678-7

    Article  CAS  Google Scholar 

  20. R. Kaur, A. Arora, S.K. Tripathi, Microelectron. Eng. 233, 111419 (2020). https://doi.org/10.1016/j.mee.2020.111419

    Article  CAS  Google Scholar 

  21. M. Koca, Z. Kudaş, D. Ekinci, S. Aydoğan, Mater. Sci. Semicond. Process. 121, 105436 (2021). https://doi.org/10.1016/j.mssp.2020.105436

    Article  CAS  Google Scholar 

  22. H. Norde, J. Appl. Phys. 50, 5052 (1979). https://doi.org/10.1063/1.325607

    Article  CAS  Google Scholar 

  23. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986). https://doi.org/10.1063/1.97359

    Article  CAS  Google Scholar 

  24. A. Tataroǧlu, Ş Altindal, M.M. Bülbül, Nucl. Instrum. Methods Phys. Res. Sect. A 568, 863–868 (2006). https://doi.org/10.1016/j.nima.2006.08.047

    Article  CAS  Google Scholar 

  25. B. Gündüz, N. Turan, E. Kaya, N. Çolak, Synth. Met. 184, 73 (2013). https://doi.org/10.1016/j.synthmet.2013.10.002

    Article  CAS  Google Scholar 

  26. E. Marıl, Physica B 604, 412732 (2021). https://doi.org/10.1016/j.physb.2020.412732

    Article  CAS  Google Scholar 

  27. S. Meftah, M. Benhaliliba, M. Kaleli, C. Benouis, C. Yavru, A. Bayram, Physica B 593, 412238 (2020). https://doi.org/10.1016/j.physb.2020.412238

    Article  CAS  Google Scholar 

  28. V.R. Reddy, V. Manjunath, V. Janardhanam, Y. Ho Kıl, C. Jong Cho, J. Electron. Mater. 43, 3499–3907 (2014). https://doi.org/10.1007/s11664-014-3177-3

    Article  CAS  Google Scholar 

  29. V.R. Reddy, C. Venkata Prasad, K. Ravindranatha Reddy, Solid State Sci. 97, 105987 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.105987

    Article  CAS  Google Scholar 

  30. A. Tataroğlu, Ş Altındal, Microelectron. Eng. 85, 1866–1871 (2008). https://doi.org/10.1016/j.mee.2008.05.025

    Article  CAS  Google Scholar 

  31. K. Deshmukh, S. Sankaran, B. Ahamed, K.K. Sadasivuni, K.S.K. Pasha, D. Ponnamma, P.S.R. Sreekanth, K. Chidambaram, Spectroscopic Methods for Nanomaterials Characterization (Elsevier, Amsterdam, 2017). https://doi.org/10.1016/B978-0-323-46140-5.00010-8

    Book  Google Scholar 

  32. O. Pakma, N. Serin, T. Serin, Ş Altındal, J. Phys. D 41, 215103 (2008). https://doi.org/10.1088/0022-3727/41/21/215103

    Article  CAS  Google Scholar 

  33. S. Karadas, S.A. Yeriskin, M. Balbaşı, Y. Azizian-Kalandaragh, J. Phys. Chem. Solids 148, 109740 (2021). https://doi.org/10.1016/j.jpcs.2020.109740

    Article  CAS  Google Scholar 

  34. Y. Azizian-Kalandaragh, İ Yücedağ, G. ErsözDemir, Ş Altındal, J. Mol. Struct. 1224, 129325 (2021). https://doi.org/10.1016/j.molstruc.2020.129325

    Article  CAS  Google Scholar 

  35. D. Akay, U. Gökmen, S. BilgeOcak, Mater. Chem. Phys. 245, 122708 (2020). https://doi.org/10.1016/j.matchemphys.2020.122708

    Article  CAS  Google Scholar 

  36. E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Muğla Sıtkı Koçman University Research and Application Center for Research Laboratories for their support.

Funding

The author did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

ŞÖ participated in the conceptualization, methodology, data analysis, and reviewing and editing of the manuscript. NA participated in the methodology and reviewing and editing of the manuscript. OP participated in the supervision and reviewing and editing of the manuscript. AK participated in the investigation and data analysis.

Corresponding author

Correspondence to Şadan Özden.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özden, Ş., Avcı, N., Pakma, O. et al. NOA61 photopolymer as an interface for Al/NOA61/p-Si/Al heterojunction MPS device. J Mater Sci: Mater Electron 32, 27688–27697 (2021). https://doi.org/10.1007/s10854-021-07150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07150-4

Navigation