Skip to main content

Advertisement

Log in

Scalable Lanthanum Titanate (La2Ti2O7) nanostructures as UV photodetectors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermally and chemically stable perovskite-like layer structures have attracted extensively in the field of energy and environmental applications. In this study, La2Ti2O7 was synthesized by the solvothermal method at 180 °C. This method provides high pure and homogeneously dispersed nanorods of orthorhombic phase having length of 250 nm and width of 70 nm. Even though this is a low-temperature synthesis method, it yields high crystalline nature after calcination. The novelty of this work is its synthesis methodology by the solvothermal route to achieve lower weight loss of La2Ti2O7. Furthermore, they exhibit narrow absorption in the UV-region from 200 to 350 nm, makes it possible to fabricate it as UV photodetector at ambient condition. In presence of UV illumination at 390 nm, it shows sharp photocurrent response with the decay time of 1.7 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.A. Fuierer, R.E. Newnham, J. Am. Ceram. Soc. 74, 2876–2881 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06857.x

    Article  CAS  Google Scholar 

  2. J. Brandon, H. Megaw, Philos. Mag. Lett. 21, 189–194 (1970). https://doi.org/10.1080/14786437008238406

    Article  CAS  Google Scholar 

  3. M. Subramanian, G. Aravamudan, G.S. Rao, Prog. Solid. State Chem. 15, 55–143 (1983). https://doi.org/10.1016/0079-6786(83)90001-8

    Article  CAS  Google Scholar 

  4. R. Turner, P.A. Fuierer, R. Newnham, T.R. Shrout, Appl. Acoust. 41, 299–324 (1994). https://doi.org/10.1016/0003-682X(94)90091-4

    Article  Google Scholar 

  5. P. Soundharraj, M. Jagannathan, D. Dhinasekaran, P. Thiruvarasu, Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2021.05.512

    Article  Google Scholar 

  6. S. Prabha, D. Durgalakshmi, S. Rajendran, E. Lichtfouse, Environ. Chem. Lett. 19, 1667–1691 (2021). https://doi.org/10.1007/s10311-020-01123-5

    Article  CAS  Google Scholar 

  7. G. Li, M. Suja, M. Chen, E. Bekyarova, R.C. Haddon, J. Liu, M.E.J. Itkis, ACS Appl. Mater. Interfaces 9, 37094–37104 (2017). https://doi.org/10.1021/acsami.7b07765

    Article  CAS  Google Scholar 

  8. Y. Qin, S. Long, H. Dong, Q. He, G. Jian, Y. Zhang, X. Hou, P. Tan, Z. Zhang, H. Lv, Chin. Phys. B 28, 018501 (2019). https://doi.org/10.1088/1674-1056/28/1/018501

    Article  CAS  Google Scholar 

  9. M. Jagannathan, D. Dhinasekaran, P. Soundharraj, S. Rajendran, D.-V.N. Vo, A. Prakasarao, S. Ganesan, J. Hazard. Mater. 416, 125091 (2021). https://doi.org/10.1016/j.jhazmat.2021.125091

    Article  CAS  Google Scholar 

  10. S. Prabha, D. Durgalakshmi, K. Subramani, P. Aruna, S. Ganesan, ACS Appl. Mater. Interfaces 12, 19245–19257 (2020). https://doi.org/10.1021/acsami.9b21585

    Article  CAS  Google Scholar 

  11. M.M. Mahlambi, A.K. Mishra, S.B. Mishra, R.W. Krause, B.B. Mamba, A.M. Raichur, J. Therm. Anal. Calorim. 110, 847–855 (2012). https://doi.org/10.1007/s10973-011-1852-7

    Article  CAS  Google Scholar 

  12. X. Xiong, R. Tian, X. Lin, D. Chu, S. Li, RSC Adv. 5, 14735–14739 (2015). https://doi.org/10.1039/C4RA13945C

    Article  CAS  Google Scholar 

  13. Y. Li, L. Jiang, Q. Chen, J. Zhu, J. Mater. Sci.: Mater. Electron. 31, 52–59 (2020). https://doi.org/10.1007/s10854-019-00877-1

    Article  CAS  Google Scholar 

  14. A. Nashim, S. Martha, K. Parida, RSC Adv. 4, 14633–14643 (2014). https://doi.org/10.1039/C3RA47037G

    Article  CAS  Google Scholar 

  15. R.A. Rakkesh, S. Balakumar, J. Nanosci. Nanotechnol. 13, 370–376 (2013). https://doi.org/10.1166/jnn.2013.6730

    Article  CAS  Google Scholar 

  16. R.A. Rakkesh, D. Durgalakshmi, P. Karthe, S. Balakumar, Mater. Chem. Phys 244, 122720 (2020). https://doi.org/10.1016/j.matchemphys.2020.122720

    Article  CAS  Google Scholar 

  17. D.W. Hwang, J.S. Lee, W. Li, S.H. Oh, J. Phys. Chem. B 107, 4963–4970 (2003). https://doi.org/10.1021/jp034229n

    Article  CAS  Google Scholar 

  18. Z. Shao, S. Saitzek, J.F. Blach, A. Sayede, P. Roussel, R. Desfeux, Wiley Online Libr. (2011). https://doi.org/10.1002/ejic.201100309

    Article  Google Scholar 

  19. M. Butler, D. Girdey, J. Electrochem. Soc. 125, 228–230 (1978). https://doi.org/10.1149/1.2131419

    Article  CAS  Google Scholar 

  20. K. Krishnankutty, K. Dayas, Bull. Mater. Sci. 31, 907–918 (2008). https://doi.org/10.1007/s12034-008-0145-7

    Article  CAS  Google Scholar 

  21. R. Swami, R. Bokolia, K. Sreenivas, Ceram. Int. 46, 26790–26799 (2020). https://doi.org/10.1016/j.ceramint.2020.07.154

    Article  CAS  Google Scholar 

  22. S.W. Lian, W. Wang, A. Lyon, P. Bartolo, M. Dickinson, B. Saunders, Nanoscale Adv. 1, 1–200 (2018). https://doi.org/10.1039/D0NA00581A

    Article  Google Scholar 

  23. G. Li, M. Suja, M. Chen, E. Bekyarova, R.C. Haddon, J. Liu, ACS Appl. Mater. Interfaces 9, 37094–37104 (2017). https://doi.org/10.1021/acsami.7b07765

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors D. Durgalakshmi gratefully acknowledges DST-INSPIRE Faculty Fellowship under the sanction DST/INSPIRE/04/2016/000845 for their funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durgalakshmi Dhinasekaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, J.F., Dhinasekaran, D., Jagannathan, M. et al. Scalable Lanthanum Titanate (La2Ti2O7) nanostructures as UV photodetectors. J Mater Sci: Mater Electron 33, 9126–9133 (2022). https://doi.org/10.1007/s10854-021-07145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07145-1

Navigation