Skip to main content
Log in

Solvent-dependent tuning of blue–green emission of chemically synthesized ZnO nanomaterials with high colour purity and electroluminescence efficiency

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of nanomaterials of ZnO have been synthesized via chemical co-precipitation method with fixed proportions of precursors and varied solvents. X-ray diffraction confirms wurtzite crystalline structure with nanometric crystallites (< 23 nm). Texture coefficient of crystallographic orientations show remarkable change for switching the solvents from water to alcohol. Morphological study reveals nanomaterials resembling prolate, sphere and oblate shaped structures for the solvents water, methanol and ethanol, respectively, with increasing particle size. All the nanomaterials show a similar absorption band in the UV region; though, more absorption covering a wider region in visible range is observed for nanomaterials prepared in alcoholic solutions. Red shifting in band gap of nanomaterials is correlated with band-tail effect. Variation in Urbach energy indicates that the nature of solvent plays a vital role in creating defects in ZnO, justifying enhanced absorptions in visible region. Photoluminescence (PL) spectra show various emission bands consisting of blue, green and yellow emissions corresponding to different intrinsic defects in nanomaterials. PL displays a tuning trend for blue–green emission by changing solvent from water to alcohol. However, overall enhanced PL intensity and particularly intense blue emission have been achieved by replacing water with alcohol. Tunability in emission colours and high colour purity is observed in the CIE chromaticity analysis. Theoretically, estimated electroluminescence of ZnO prepared in alcohol shows superiority compared to ZnO prepared in water. The mechanism of solvent-mediated defect creation and emission in ZnO will be beneficial for future QD LED applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Bitenc, P. Podbršček, Z. Crnjak Orel, M.A. Cleveland, J.A. Paramo, R.M. Peters, Y.M. Strzhemechny, Cryst. Growth Des. 9, 997 (2009)

    Article  CAS  Google Scholar 

  2. W.S. Shi, B. Cheng, L. Zhang, E.T. Samulski, J. Appl. Phys. 98, 083502 (2005)

    Article  Google Scholar 

  3. P.C. Chang, Z. Fan, C.J. Chien, D. Stichtenoth, C. Ronning, J.G. Lu, Appl. Phys. Lett. 89, 133113 (2006)

    Article  Google Scholar 

  4. D.T. Phan, G.S. Chung, Sens. Actuators B Chem. 161, 341 (2012)

    Article  CAS  Google Scholar 

  5. N.P. Shetti, S.D. Bukkitgar, K.R. Reddy, C.V. Reddy, T.M. Aminabhavi, Biosens. Bioelectron. 141, 111417 (2019)

    Article  CAS  Google Scholar 

  6. K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, H. Siegbahn, J. Photochem. Photobiol. A Chem. 148, 57 (2002)

    Article  CAS  Google Scholar 

  7. Y.S. Choi, J.W. Kang, D.K. Hwang, S.J. Park, IEEE Trans. Electron Devices 57(1), 26 (2009)

    Article  Google Scholar 

  8. M. Ghosh, A.K. Raychaudhuri, Nanotechnology 19, 445704 (2008)

    Article  Google Scholar 

  9. A. Baral, M. Khamya, S.S. Islam, R. Sharma, B.R. Mehta, J. Lumin. 183, 383 (2017)

    Article  CAS  Google Scholar 

  10. D. Barrera, N. Pino, D. López, R. Buitrago-Sierra, Adv. Nat. Sci.: Nanosci. Nanotechnol 11(2), 025015 (2020)

    CAS  Google Scholar 

  11. S.Y. Chan, S.C. Wu, C.Y. Wang, H.C. Hsu, Opt. Express 28(3), 2799–2808 (2020)

    Article  Google Scholar 

  12. M.O. Amin, M. Madkour, E. Al-Hetlani, Anal. Bioanal. Chem. 410(20), 4815–4827 (2018)

    Article  CAS  Google Scholar 

  13. A. Bumajdad, M. Madkour, Nanoscale Res. Lett. 10(1), 1–5 (2015)

    Article  CAS  Google Scholar 

  14. R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y.J.C.I. Al-Douri, Ceram. Int. 39(3), 2283–2292 (2013)

    Article  CAS  Google Scholar 

  15. R. Kripal, A.K. Gupta, R.K. Srivastava, S.K. Mishra, Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 1605 (2011)

    Article  CAS  Google Scholar 

  16. L. Xu, Y.L. Hu, C. Pelligra, C.H. Chen, L. Jin, H. Huang, S.L. Suib, Chem. Mater. 21, 2875 (2009)

    Article  CAS  Google Scholar 

  17. A. Pimentel, J. Rodrigues, P. Duarte, D. Nunes, F.M. Costa, T. Monteiro, E. Fortunato, J. Mater. Sci. 50, 5777 (2015)

    Article  CAS  Google Scholar 

  18. K.G. Kanade, B.B. Kale, R.C. Aiyer, B.K. Das, Mater. Res. Bull. 41, 590 (2006)

    Article  CAS  Google Scholar 

  19. K. Davis, R. Yarbrough, M. Froeschle, J. White, H. Rathnayake, RSC Adv. 9, 14638 (2019)

    Article  CAS  Google Scholar 

  20. J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, C. Yan, Chem. Mater. 14, 4172 (2002)

    Article  CAS  Google Scholar 

  21. A. Ali, S. Ambreen, R. Javed, S. Tabassum, I. UlHaq, M.Zia, Mater. Sci. Eng. C 74, 137 (2017)

    Article  CAS  Google Scholar 

  22. N. Talebian, S.M. Amininezhad, M. Doudi, J. Photochem. Photobiol. B 120, 66 (2013)

    Article  CAS  Google Scholar 

  23. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentices hall, New Jersey, 2001)

    Google Scholar 

  24. G.K. Williamson, W.H. Hall, Acta Metall. 1, 1 (1953)

    Article  Google Scholar 

  25. Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, Appl. Surf. Sci. 242, 212 (2005)

    Article  CAS  Google Scholar 

  26. S.K.N. Ayudhya, T. Parawee, M. Okorn, P. Varong, P. Piyasan, Cryst. Growth Des. 6, 11 (2006)

    Article  Google Scholar 

  27. P.P. Mahamuni, P.M. Patil, M.J. Dhanvade,Biochem. Biophys. Rep. 17, 71 (2019)

    Google Scholar 

  28. S. Dutta, S. Chattopadhyay, M. Sutradhar, A. Sarkar, M. Chakrabarti, D. Sanyal, D. Jana, J. Phys. Condens. Matter 19, 236219 (2007)

    Article  Google Scholar 

  29. B. Efafi, M.M. Ara, S.S. Mousavi, J. Lumin. 178, 384 (2016)

    Article  CAS  Google Scholar 

  30. X. Tang, E.S.G. Choo, L. Li, J. Ding, J. Xue, Chem. Mater. 22, 3383 (2010)

    Article  CAS  Google Scholar 

  31. A.B. Djurisic, Y.H. Leung, Small 2, 944 (2006)

    Article  CAS  Google Scholar 

  32. M.V. Limaye, S.B. Singh, R. Das, P. Poddar, S.K. Kulkarni, J. Solid State Chem. 184, 391 (2011)

    Article  CAS  Google Scholar 

  33. G. Song, X. Fang, H. Liang, Spectrosc Spect Anal 30, 591 (2010)

    CAS  Google Scholar 

  34. H. Chen, J. Ding, S. Ma, Superlattice Microst 49, 176 (2011)

    Article  CAS  Google Scholar 

  35. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  CAS  Google Scholar 

  36. C.S. McCamy, Color Res. Appl. 17, 21 (1992)

    Google Scholar 

  37. Y. L.Qian, J. Zheng, P.H. Xue, Holloway, Nat. Photonics 5, 543 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Authors sincerely acknowledge the facilities of FESEM, XRD, and UV–Vis–NIR spectrophotometry availed from Central Research Facility of IIT (ISM) Dhanbad. PL spectroscopy is availed from the Department of Physics, IIT (ISM) Dhanbad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Kumari.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, L., Kar, A.K. Solvent-dependent tuning of blue–green emission of chemically synthesized ZnO nanomaterials with high colour purity and electroluminescence efficiency. J Mater Sci: Mater Electron 33, 9101–9115 (2022). https://doi.org/10.1007/s10854-021-07140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07140-6

Navigation