Skip to main content

Advertisement

Log in

Preparation and photocatalytic performance of CuO/GO heterojunction nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, solar photocatalytic technology has proved to be an effective way to solve the problems of environmental pollution and energy shortage due to its green environmental protection and fast degradation rate. In this paper, a simple microwave hydrothermal method is used to prepare a novel CuO/GO heterojunction composite photocatalyst, and its chemical composition, microstructure, physicochemical properties, photothermal conversion, and photocatalytic properties are studied. The results show that the addition of GO in the CuO/GO nanocomposite photocatalyst not only effectively reduces the agglomeration of CuO nanoparticles but also makes it exhibit better photocatalytic activity than pure nano-CuO. The degradation rate of MB increased by 39.48% at 120 min of light, and as high as 94.1% at 180 min, mainly due to the construction of heterojunction at the interface and the synergistic promotion effect of light and heat. The internal mechanism of light and heat synergistic catalysis is revealed. This paper not only proposes a low-cost and efficient CuO/GO light-heat composite photocatalyst but also provides new ideas for subsequent researchers to design and prepare nanocomposite photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Karthikeyan, P. Arunachalam, K. Ramachandran, A.M. Al-Mayouf, S. Karuppuchamy, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.154281

    Article  Google Scholar 

  2. F. Wang, Q. Li, D. Xu, Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201700529

    Article  Google Scholar 

  3. L. Ma, S. Chen, Y. Shao et al., Catalysts (2018). https://doi.org/10.3390/catal8120634

    Article  Google Scholar 

  4. D. Smazna, S. Shree, O. Polonskyi et al., J. Environ. Chem. Eng. (2019). https://doi.org/10.1016/j.jece.2019.103016

    Article  Google Scholar 

  5. Z. Fu, X. Zhao, S. Zhang, Z. Fu, Mater. Chem. Phys. (2021). https://doi.org/10.1016/j.matchemphys.2020.124004

    Article  Google Scholar 

  6. J. You, W. Bao, L. Wang, A. Yan, R. Guo, J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.158921

    Article  Google Scholar 

  7. C. Xu, P. Ravi Anusuyadevi, C. Aymonier, R. Luque, S. Marre, Chem. Soc. Rev. (2019). https://doi.org/10.1039/c9cs00102f

    Article  Google Scholar 

  8. C. Zhou, C. Lai, C. Zhang et al., Appl. Catal. B (2018). https://doi.org/10.1016/j.apcatb.2018.07.011

    Article  Google Scholar 

  9. P. Moroz, A. Boddy, M. Zamkov, Front. Chem. (2018). https://doi.org/10.3389/fchem.2018.00353

    Article  Google Scholar 

  10. Y. Fu, J. Li, J. Li, Nanomaterials  (2019). https://doi.org/10.3390/nano9030359

  11. W. Han, Z. Li, Y. Li et al., Front. Chem. (2017). https://doi.org/10.3389/fchem.2017.00084

    Article  Google Scholar 

  12. M.B. Tahir, S. Tufail, A. Ahmad et al., Int. J. Environ. Anal. Chem. (2019). https://doi.org/10.1080/03067319.2019.1686494

    Article  Google Scholar 

  13. H.K. Paumo, S. Dalhatou, L.M. Katata-Seru et al., J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.115458

    Article  Google Scholar 

  14. H.Y. Hafeez, S.K. Lakhera, N. Narayanan et al., ACS Omega (2019). https://doi.org/10.1021/acsomega.8b03221

    Article  Google Scholar 

  15. M. Yuan, W.-H. Zhou, D.-X. Kou, Z.-J. Zhou, Y.-N. Meng, S.-X. Wu, Int. J. Hydrog. Energy (2018). https://doi.org/10.1016/j.ijhydene.2018.09.161

    Article  Google Scholar 

  16. A. Phuruangrat, P.O. Keereesaensuk, K. Karthik et al., J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-019-01190-4

    Article  Google Scholar 

  17. Y. Xiao, H. Yu, X. Dong, J. Solid State Chem. (2019). https://doi.org/10.1016/j.jssc.2019.120893

    Article  Google Scholar 

  18. C. Noda, Y. Asakura, K. Shiraki, A. Yamakata, S. Yin, Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.124616

    Article  Google Scholar 

  19. N. Bai, X. Liu, Z. Li, X. Ke, K. Zhang, Q. Wu, J. Sol–Gel Sci. Technol. (2021). https://doi.org/10.1007/s10971-021-05552-8

    Article  Google Scholar 

  20. Y.M. Hunge, A.A. Yadav, V.L. Mathe, J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-8593-3

    Article  Google Scholar 

  21. C. Li, W. Yang, Q. Li, J. Mater. Sci. Technol. (2018). https://doi.org/10.1016/j.jmst.2017.06.010

    Article  Google Scholar 

  22. F. Yu, C. Wang, H. Ma et al., Nanoscale (2020). https://doi.org/10.1039/c9nr09743k

    Article  Google Scholar 

  23. F. Hamidi, F. Aslani, Nanomaterials  (2019). https://doi.org/10.3390/nano9101444

  24. J.-L. Shi, X. Lang, Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123632

    Article  Google Scholar 

  25. V. Mahmoodi, T.R. Bastami, A. Ahmadpour, Environ. Sci. Pollut. Res. Int. (2018). https://doi.org/10.1007/s11356-018-1224-y

    Article  Google Scholar 

  26. M.H. Razali, M. Yusoff, Mater. Lett. (2018). https://doi.org/10.1016/j.matlet.2018.03.100

    Article  Google Scholar 

  27. W. Wang, Q. Zhou, X. Fei et al., CrystEngComm (2010). https://doi.org/10.1039/b919043k

    Article  Google Scholar 

  28. L.J. Wang, Q. Zhou, Y. Liang et al., Appl. Surf. Sci. (2013). https://doi.org/10.1016/j.apsusc.2013.01.148

    Article  Google Scholar 

  29. M.P. Rao, J.J. Wu, A.M. Asiri, S. Anandan, M. Ashokkumar, J. Environ. Sci. (2018). https://doi.org/10.1016/j.jes.2017.05.005

    Article  Google Scholar 

  30. X. He, C. Zhang, J. Mater. Sci. (2019). https://doi.org/10.1007/s10853-019-03417-8

    Article  Google Scholar 

  31. N. Kumaresan, M.M.A. Sinthiya, K. Ramamurthi, R. Ramesh Babu, K. Sethuraman, Arab. J. Chem. (2020). https://doi.org/10.1016/j.arabjc.2019.03.002

    Article  Google Scholar 

  32. M.A. Ávila-López, E. Luévano-Hipólito, L.M. Torres-Martínez, J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.159846

    Article  Google Scholar 

  33. E. Luévano-Hipólito, L.M. Torres-Martínez, A. Fernández-Trujillo, J. Phys. Chem. Solids (2021). https://doi.org/10.1016/j.jpcs.2020.109917

    Article  Google Scholar 

  34. H. Safajou, M. Ghanbari, O. Amiri et al., Int. J. Hydrog. Energy (2021). https://doi.org/10.1016/j.ijhydene.2021.03.175

    Article  Google Scholar 

  35. Y. Hu, C. Zhou, H. Wang et al., Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.128795

    Article  Google Scholar 

  36. Y. Liu, S. Shen, J. Zhang, W. Zhong, X. Huang, Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.02.010

    Article  Google Scholar 

  37. G.S. Jamila, S. Sajjad, S.A.K. Leghari, M. Long, J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2019.121087

    Article  Google Scholar 

  38. W. Shao, H. Wang, X. Zhang, Dalton Trans. (2018). https://doi.org/10.1039/c8dt02613k

    Article  Google Scholar 

  39. X. Pu, D. Zhang, Y. Gao et al., J. Alloys Compd. (2013). https://doi.org/10.1016/j.jallcom.2012.11.028

    Article  Google Scholar 

  40. M. Zarrabi, M. Haghighi, R. Alizadeh, Ultrason. Sonochem. (2018). https://doi.org/10.1016/j.ultsonch.2018.05.034

    Article  Google Scholar 

  41. H. Li, Z. Su, S. Hu, Y. Yan, Appl. Catal. B (2017). https://doi.org/10.1016/j.apcatb.2017.02.013

    Article  Google Scholar 

  42. R. Yang, X. Lu, H. Zhang et al., Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2015.11.239

    Article  Google Scholar 

  43. Z. Gu, N. Yang, P. Han et al., Small Methods (2018). https://doi.org/10.1002/smtd.201800449

    Article  Google Scholar 

  44. W. Fan, H. Li, F. Zhao et al., Chem. Commun. (2016). https://doi.org/10.1039/c6cc00903d

    Article  Google Scholar 

  45. J. Fang, Y. Xuan, RSC Adv. (2017). https://doi.org/10.1039/c7ra12022b

    Article  Google Scholar 

  46. L. Wei, C. Yu, K. Yang, Q. Fan, H. Ji, Chin. J. Catal. (2021). https://doi.org/10.1016/s1872-2067(20)63721-4

    Article  Google Scholar 

  47. G.K. Dalapati, S. Masudy-Panah, R.S. Moakhar et al., Glob. Chall. (2020). https://doi.org/10.1002/gch2.201900087

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology and Innovation Major Project of Hubei (Grant Nos. 2021BGE023 and 2020BED002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Li.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Ji, W., Gu, M. et al. Preparation and photocatalytic performance of CuO/GO heterojunction nanocomposite. J Mater Sci: Mater Electron 32, 27564–27575 (2021). https://doi.org/10.1007/s10854-021-07131-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07131-7

Navigation