Skip to main content

Advertisement

Log in

Application of organic photovoltaic cell: poly(2-aminofluoren)/multi-walled carbon nanotube composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work presents the 2-aminofluorene polymer matrix based on the multi-walled carbon nanotube module for an alternative energy conversion system as a photovoltaic solar cell. The properties of the MWCNT-PAF composite were taken characterized by thermogravimetric methods, differential scanning calorimetry, fourier-transform infrared spectroscopy analysis, scanning electron microscope images and X-ray powder diffraction analysis, furthermore, photophysical properties are observed in cyclic voltammetry, fluorescent and UV–Vis spectrometer. This work pioneer that the synthesized new structures are used for the first time in the active layers of solar cell devices. These new conductive polymers have exhibited good performance by adding different proportions of MWCNT to the functionalized PAF polymer, which were used for the first time in the active layer of OPV devices. According to our results PAF1, PAF2, PAF3 material exhibited more efficient performance than PAF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Guerra, N. Belcarı, M.G. Bısognı, G. Losa, S. Marcatılı, G. Ambrosı, F. Corsı, C. Marzocca, G.D. Betta, C. Pıemonte, Advantages and pitfalls of the silicon photomultiplier (SiPM) as photodetector for the next generation of PET scanners. Nucl. Instrum. Methods Phys. Res., Sect. A 617, 223–226 (2010)

    Article  Google Scholar 

  2. C. Winder, N.S. Sariciftci, Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. J. Mater. Chem. 14(7), 1077–1086 (2004)

    Article  CAS  Google Scholar 

  3. M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors. Biosens. Bioelectron. 17(5), 345–359 (2002)

    Article  CAS  Google Scholar 

  4. MacDiarmid A.G., Heeger A.J., (1980). Organic Metals and Semiconductors: The Chemistry of Polyacetylene,(CH) X, and Its Derivatives (pp. 393–402). Springer Netherlands

  5. G. Sönmez, H.B. Sönmez, C.K. Shen, R.W. Jost, Y. Rubin, F. Wudl, A Processable green polymeric electrochromic. Macromolecules 38(3), 669–675 (2005)

    Article  Google Scholar 

  6. S. Tian, J. Liu, T. Zhu, W. Knoll, Polyaniline/gold nanoparticle multilayer films: assembly, properties, and biological applications. Chem. Mater. 16(21), 4103–4108 (2004)

    Article  CAS  Google Scholar 

  7. Mattox, D.M., (1998). Handbook of physical vapor deposition (PVD) processing, Noyes Publications, Westwood – New Jersey – U.S.A., 31–33, 307–308, 345–393.

  8. I.D. Parker, Carrier tunneling and device characteristics in polymer light-emitting diodes. J. Appl. Phys. 75(3), 1656–1666 (1994)

    Article  CAS  Google Scholar 

  9. G. Hadziioannou, G.G. ve Malliaras, Semiconducting Polymers: Chemistry, Physics and Engineering, 2 (Wiley, Weinheim-Germany, 2007), pp. 667–694

    Google Scholar 

  10. N.S. Sarıçiftçi, D. Braun, C. Zhang, V.I. Srdanov, A.J. Heeger, G. Stucky, F. Wudl, Semiconducting polymerbuckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells. Applied Pyhsics Letter 62, 585–587 (1993)

    Article  Google Scholar 

  11. Meissner D., Siebentrıtt S., Gunster S., (1992). Charge carrier photogeneration in organic solar cells. International symposium on optical materials technology for energy efficiency and solar energy conversion XI: photovoltaics, photochemistry and photoelectrochemistry, Toulouse, France.

  12. H. Spanggaard, F.C. Krebs, A brief history of the development of organic and polymeric photovoltaics. Sol. Energy Mater. Sol. Cells 83, 125–146 (2004)

    Article  CAS  Google Scholar 

  13. B.A. Gregg, M.C. Hanna, Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. J. Appl. Phys. 93, 3605–3614 (2003)

    Article  CAS  Google Scholar 

  14. P. Schılınsky, C. Waldauf, C.J. Brabec, Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl. Phys. Lett. 81(2002), 3885–3887 (2002)

    Article  Google Scholar 

  15. Balzani V., (2001). Electron transfer in chemistry (Ed.). Vch Verlagsgesellschaft Mbh.

  16. Benigni B., (2005). Structure−Activity Relationship Studies of Chemical Mutagens and Carcinogens: Mechanistic Investigations and Prediction Approaches, 105 (5): 1767–1800.

  17. M. Svensson, F. Zhang, S.C. Veenstra, W.J. Verhees, J.C. Hummelen, J.M. Kroon, O. Inganäs, M.R. Andersson, High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv. Mater. 15(12), 988–991 (2003)

    Article  CAS  Google Scholar 

  18. K.H. Weinfurtner, H. Fujikawa, S. Tokito, Y. Taga, Highly efficient pure blue electroluminescence from polyfluorene: Influence of the molecular weight distribution on the aggregation tendency. Appl. Phys. Lett. 76(18), 2502–2504 (2000)

    Article  CAS  Google Scholar 

  19. U. Scherf, E.J. List, Semiconducting polyfluorenes towards reliable structure–property relationships. Adv. Mater. 14(7), 477–487 (2002)

    Article  CAS  Google Scholar 

  20. S. Inaoka, R. Advincula, Synthesis and Oxidative Cross-Linking of Fluorene-Containing Polymers To Form Conjugated Network Polyfluorenes: Poly (fluoren-9, 9-diyl-a lt-alkan-α, ω-diyl). Macromolecules 35(7), 2426–2428 (2002)

    Article  CAS  Google Scholar 

  21. H.A. Alturaif, Z.A. ALOthman, J.G. Shapter, S.M. Wabaidur, Use of carbon nanotubes (CNTs) with polymers in solar cells, Molecules 19 (2014) 17329e17344.

  22. T.M. Barnes, J.D. Bergeson, R.C. Tenent, B.A. Larsen, G. Teeter, K.M. Jones, J.L. Blackburn, J. van de Lagemaat, Carbon nanotube network electrodes enabling efficient organic solar cells without a hole transport layer, Appl. Phys. Lett. 96 (2010) 243309.

  23. K. Sears, G. Fanchini, S.E. Watkins, C.P. Huynh, S.C. Hawkins, Aligned carbon nanotube webs as a replacement for indium tin oxide in organic solar cells, Thin Solid Films 531 (2013) 525e529.

  24. A. Capasso, L. Salamandra, A. Chou, A. Di Carlo, N. Motta, Multi-wall carbon nanotube coating of fluorine-doped tin oxide as an electrode surface modifier for polymer solar cells, Sol. Energy Mater. Sol. Cell. 122 (2014) 297e302.

  25. R.A. Hatton, N. Blanchard, L.W. Tan, G. Latini, F. Cacialli, S.R.P. Silva, Oxidised carbon nanotubes as solution processable, high work function hole-extraction layers for organic solar cells, Org. Electron. 10 (2009) 388e395.

  26. S.H. Jin, S.I. Cha, G.H. Jun, J.Y. Oh, S. Jeon, S.H. Hong, Non-covalently functionalized single walled carbon nanotube/poly (3, 4ethylenedioxythiophene): poly (styrenesulfonate) nanocomposites for organic photovoltaic cell, Synth. Met. 181 (2013) 92e97.

  27. H.P. Kim, A.R. bin Mohd Yusoff, H.M. Kim, H.J. Lee, G.J. Seo, J. Jang, Inverted organic photovoltaic device with a new electron transport layer, Nanoscale Res. Lett. 9 (2014) 1e9.

  28. S. Jin, G.H. Jun, S. Jeon, S.H. Hong, Design and application of carbon nanomaterials for photoactive and charge transport layers in organic solar cells. Nano Converg. 3, 1 (2016)

    Article  CAS  Google Scholar 

  29. R. Ratha, P.J. Goutam, P.K. Iyer, Photo stability enhancement of Poly (3-hexylthiophene)-PCBM nanocomposites by addition of multi walled carbon nanotubes under ambient conditions, Org. Electron. 15 (2014) 1650e1656.

  30. L. Lu, T. Xu, W. Chen, J.M. Lee, Z. Luo, I.H. Jung, H.I. Park, S.O. Kim, L. Yu, The role of N-doped multiwall carbon nanotubes in achieving highly efficient polymer bulk heterojunction solar cells, Nano Letters 13 (2013) 2365e2369.

  31. Meng, L., Fu, C., & Lu, Q. (2009). Advanced technology for functionalization of carbon nanotubes. Progress in Natural Science19(7), 801–810. Balasubramanian, K., & Burghard, M. (2006).

  32. S. Erten-Ela, S. Cogal, G.C. Cogal, A.U. Oksuz, Highly conductive polymer materials based multi-walled carbon nanotubes as counter electrodes for dye-sensitized solar cells. Fullerenes, Nanotubes, Carbon Nanostruct. 24(6), 380–384 (2016)

    Article  CAS  Google Scholar 

  33. K.C. Huang, Y.C. Wang, R.X. Dong, W.C. Tsai, K.W. Tsai, C.C. Wang, Y.-H. Chen, R. Vittal, R.J. Lin, K.C. Ho, A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode. J. Mater. Chem. 20(20), 4067–4073 (2010)

    Article  CAS  Google Scholar 

  34. R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO 2: a comparative study. J. Sol-Gel. Sci. Technol. 61(1), 1–7 (2012)

    Article  Google Scholar 

  35. L. Leonat, G. Sbarcea, I.V. Branzoi, Cyclic voltammetry for energy levels estimation of organic materials. UPB Sci Bull Ser B 75(3), 111–118 (2013)

    CAS  Google Scholar 

  36. D.O. Cowan, R.L.E. Drisko, Photochemical reactions. iv. photodimerization of acenaphthylene. Mechanistic studies. Journal of American Chemical Society 92, 6286–6291 (1970)

    Article  CAS  Google Scholar 

  37. J.L. Bredas, R. Silbey, D.S. Boudreux, R.R. Chance, Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. J. Am. Chem. Soc. 105, 6555 (1983)

    Article  CAS  Google Scholar 

  38. Kymakis E., Kornilios K., and Koudoumas E., (2008). Carbon nanotube doping of P3HT:PCBM photovoltaic devices.Journal of Physıcs D: Applied Physıcs,41 (2008) 165110 (5pp).

Download references

Acknowledgements

We gratefully acknowledge the financial support of this work by the Amasya University Scientific Research Foundation (FMB-BAP 20-0455).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Melek Gül or Betül Canımkurbey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldemir, M.A., Topuksak, H., Taş, R. et al. Application of organic photovoltaic cell: poly(2-aminofluoren)/multi-walled carbon nanotube composites. J Mater Sci: Mater Electron 32, 27462–27474 (2021). https://doi.org/10.1007/s10854-021-07122-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07122-8

Navigation