Skip to main content
Log in

Synthesis of lanthanum titanate (La2Ti2O7) for high temperature sensor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lanthanum titanate (La2Ti2O7) with perovskite-like layered structure is a candidate material for high temperature sensor application due to its high curie temperature (Tc = 1461 °C) and linearity of temperature vs. electrical resistance. La2Ti2O7 (LTO) was synthesized by solid state reaction using constituent powders at 1250 °C for 2 h. The LTO samples prepared in the form of circular pellets were sintered in temperature ranges (1350 to 1400 °C for 2 h). The sintered density was found highest at 1400 °C for LTO samples (> 97.24% Th.). Moreover, the sintered LTO samples were characterized for their ferroelectric properties as well as DC electrical resistivity (ρ) measured in the temperature range of 100 to 900 °C. The electrical resistivity was decreased from 1013 to 106 Ω cm linearly with the increase in temperature from 100 to 900 °C. Hence, LTO is a promising sensor material for high temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Weng, F.L. Duan, Z. Ji, X. Chen, Ceram. Int. 46, 3600 (2020)

    Article  CAS  Google Scholar 

  2. D. Damjanovic, Curr. Opin. Solid State Mater. Sci. 3, 469 (1998)

    Article  CAS  Google Scholar 

  3. S. Zhang, F. Yu, J. Am. Ceram. Soc. 94, 3153 (2011)

    Article  CAS  Google Scholar 

  4. X. Gong, L. An, C. Xu, IEEE International Workshop on Antenna Technology, Tucson, AZ, 140 (2012)

  5. S.S. Lutz, W.D. Turley, H.M. Borella, B.W. Noel, M.R. Cates, M.R. Probert, Proc. ISA Aerosp. Instrum. Symp. 34, 217 (1988)

    Google Scholar 

  6. A. Bhattacharya, R.R. Srinivas, K.M. Ghanashyam, Sens. Actuators A. 134, 348 (2007)

    Article  CAS  Google Scholar 

  7. X. Li, Q. Liu, S. Pang, K. Xu, Sens. Actuators A. 179, 277 (2012)

    Article  CAS  Google Scholar 

  8. S. Nanamatsu, M. Kimura, T. Kawamura, J. Phys. Soc. Jpn. 38, 817 (1975)

    Article  CAS  Google Scholar 

  9. P. Sivagnanapalani, B. Sahoo, P.K. Panda, Ceram. Int. 44, 20348 (2018)

    Article  CAS  Google Scholar 

  10. G. Winfield, F. Azough, R. Freer, Ferroelectrics 133, 181 (1992)

    Article  CAS  Google Scholar 

  11. M. Kimura, S. Nanamatsu, K. Doi, S. Matsushita, M. Takahashi, Jpn. J. Appl. Phys. 11, 904 (1972)

    Article  CAS  Google Scholar 

  12. S. Nanamatsu, M. Kimura, K. Doe, S. Matsushita, N. Yamada, Ferroelectric 8, 511 (1974)

    Article  CAS  Google Scholar 

  13. M. Gasperin, Acta Crystallogr. B 31, 2129 (1975)

    Article  Google Scholar 

  14. U. Balachandran, N.G. Eror, J. Mater. Res. 4, 1525 (1989)

    Article  CAS  Google Scholar 

  15. K. Scheunemann, H.K. Muller-Buschbaum, J. Inorg. Nucl. Chem. 37, 1878 (1975)

    Google Scholar 

  16. N. Ishizawa, F. Marumo, S. Iwai, M. Kimura, T. Kawamura, Acta Crystallogr. B 38, 368 (1982)

    Article  Google Scholar 

  17. S. Marzullo, E.N. Bunting, J. Am. Ceram. Soc. 41, 40 (1958)

    Article  CAS  Google Scholar 

  18. H. Ouchi, S. Kawashima, Jpn. J. Appl. Phys. Suppl. 24, 60 (1985)

    Article  CAS  Google Scholar 

  19. P.A. Fuierer, R.E. Newnham, J. Am. Ceram. Soc. 74, 2876 (1991)

    Article  CAS  Google Scholar 

  20. M.R. Nasrabadi, S. Mahdavi, K. Adid, J. Mater. Sci: Mater. Electron. 28, 12564 (2017)

    Google Scholar 

  21. H. Ning, H. Yan, M.J. Reece, J. Am. Ceram. Soc. 93(5), 1409 (2010)

    CAS  Google Scholar 

  22. P. Sivagnanapalani, B. Sahoo, P.K. Panda, ISSS J. Micro Smart Syst. 8, 25 (2019)

    Article  Google Scholar 

  23. P. Sivagnanapalani, N.I. Ansari, P.K. Panda, Sensor Int. 2, 100093 (2021)

    Article  Google Scholar 

  24. C. Li, J. Khaliq, H. Ning, X. Wei, J. Adv. Dielectr. 5, 1550005 (2015)

    Article  CAS  Google Scholar 

  25. H. Yan, H. Ning, Y. Kan, P. Wang, M.J. Reece, J. Am. Ceram. Soc. 92, 2270 (2009)

    Article  CAS  Google Scholar 

  26. W.J. Zhang, Y.X. Liu, C.G. Li, J. Phys. Chem. Solids. 118, 144 (2018)

    Article  CAS  Google Scholar 

  27. W.J. Zhang, Z. Ma, L. Du, L. Yang, X. Chen, H. He, J. Alloys Compd. 695, 3541 (2017)

    Article  CAS  Google Scholar 

  28. A. Sayir, S.C. Farmer, F. Dynys, Ceram. Trans. 179, 57 (2006)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank XRD and SEM group of MSD, CSIR-NAL for their immense support. The authors also thank GTMAP-AR&DB, India for the sanction of project (ARDB/GTMAP/01/2031818/M/I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Panda.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, N.I., Sivagnanapalani, P., Sureshkumar, V. et al. Synthesis of lanthanum titanate (La2Ti2O7) for high temperature sensor applications. J Mater Sci: Mater Electron 32, 27422–27428 (2021). https://doi.org/10.1007/s10854-021-07117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07117-5

Navigation